Wrangling Tabular Data with LLMs: What's Possible and What's Not

CSG Data Management

Jan-Micha Bodensohn and Liane Vogel

NHR for CES

TECHNISCHE UNIVERSITÄT DARMSTADT

Collaborators

Jan-Micha Bodensohn

Ulf Brackmann

Liane Vogel

Matthias Urban

TECHNISCHE UNIVERSITÄT DARMSTADT

Anupam Sanghi

Carsten Binnig

Agenda

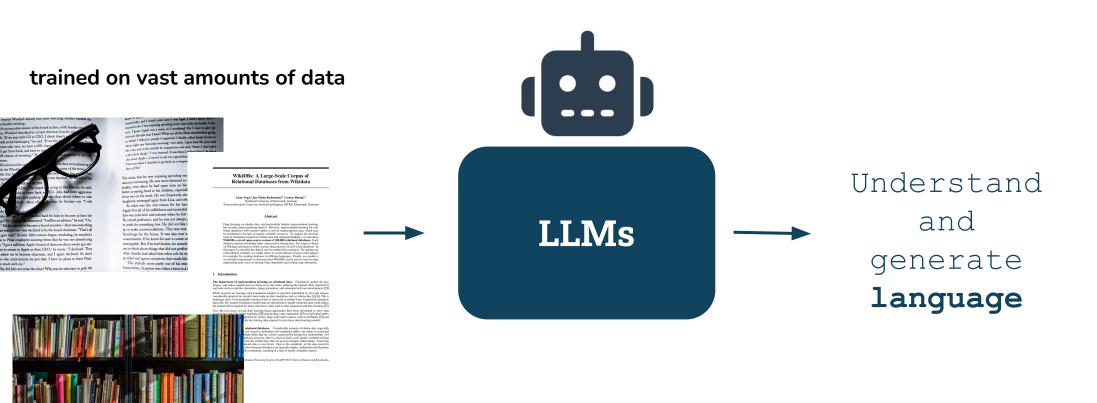
(Brief) Introduction to LLMs

LLMs for Data Engineering

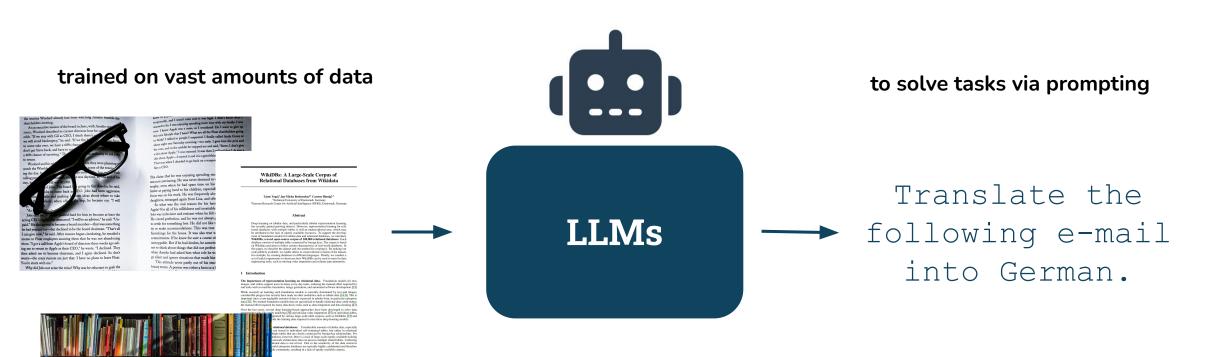
- What works?
- What doesn't work (yet)?
- What's to come?

(Brief) Introduction to LLMs

Introduction to LLMs



Introduction to LLMs



Solve Tasks via Prompting

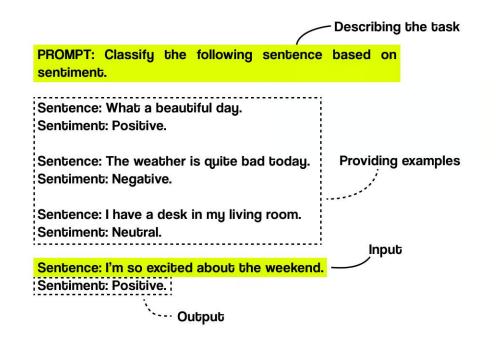
NHR4 CES

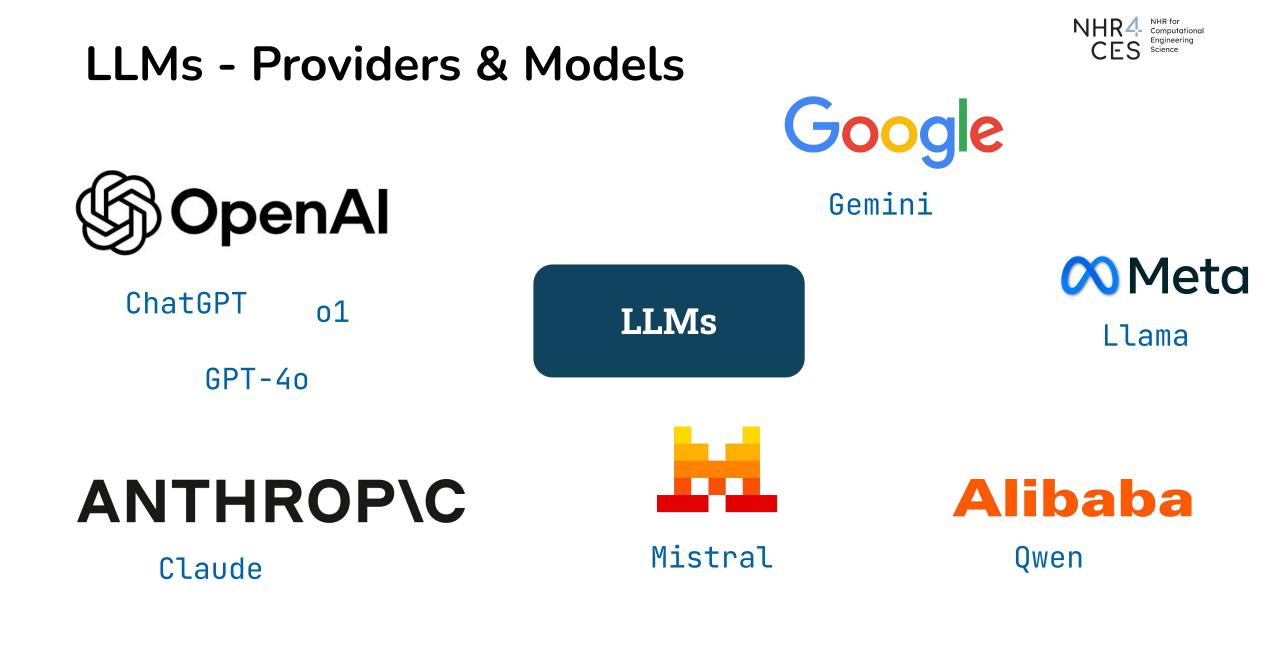
Zero Shot Prompting = provide only the instructions

Few Shot Prompting = give input & output examples

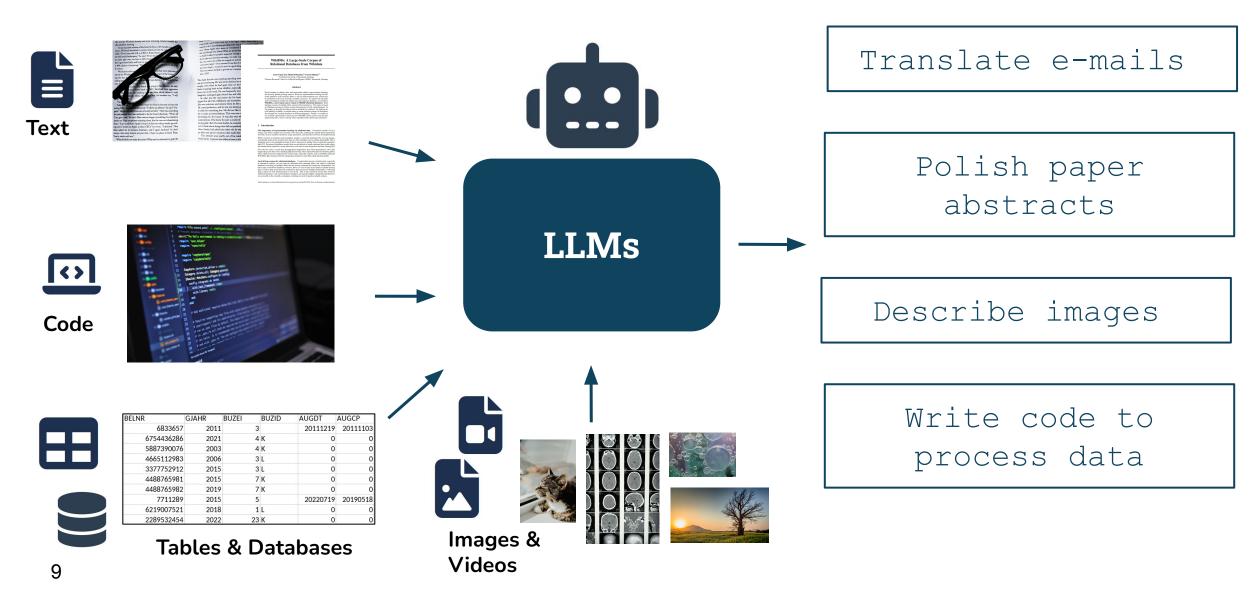
Chain-of-Thought Prompting & **Reasoning** = LLM generates reasoning chain before answering

FEW SHOT PROMPTING





LLMs - Beyond text



LLMs & Structured data

1 -	{	
2 -	"endereco": {	
3	"cep": "31270901",	
4	"city": "Belo Horizonte",	
5	"neighborhood": "Pampulha",	
6	"service": "correios",	
7	"state": "MG",	
8	"street": "Av. Presidente Antônio Carlos, 6627"	
9	}	
10	}	

CSV

XML

- 1 <?xml version="1.0" encoding="UTF-8"?>
- 2 <endereco>
- 3 <cep>31270901</cep>
- 4 <city>Belo Horizonte</city>
- 5 <neighborhood>Pampulha</neighborhood>
- 6 <service>correios</service>
- 7 <state>MG</state>
- 8 <street>Av. Presidente Antônio Carlos, 6627</street>
- 9 </endereco>

BSEG

MANDT, BUKRS, BELNR, GJAHR, BUZEI, BUZID, AUGDT, AUGCP, AUGBL, ...
1, D054, 5930568205, 2013, 5, H, 20140503, 20140501, 9836283674, ...
1, D054, 5829473293, 2021, 7, H, 20221123, 20221119, 3485949047, ...
1, D037, 3168347239, 2012, 43, L, 20120913, 20120831, 7554950694, ...

Python

pandas

NHR for

Science

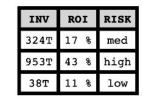
Computational Engineering

NHR4

CI-S

LLMs for Data Engineering

Applications Need Clean Data



year	sales
2021	4.32M
2022	4.65M
2023	5.12M

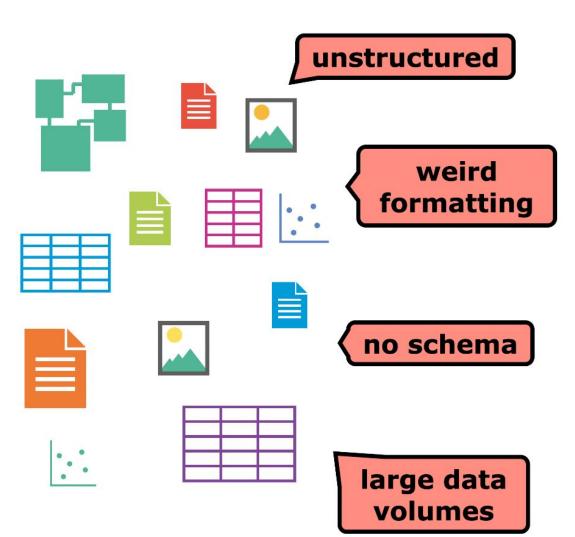
ID	LEN	AVP
a3f6	21M	67
d874	45S	59
b39e	53M	40

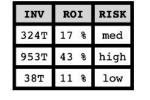
machine learning

clean data

applications

Real-World Data Is Messy





year	sales
2021	4.32M
2022	4.65M
2023	5.12M

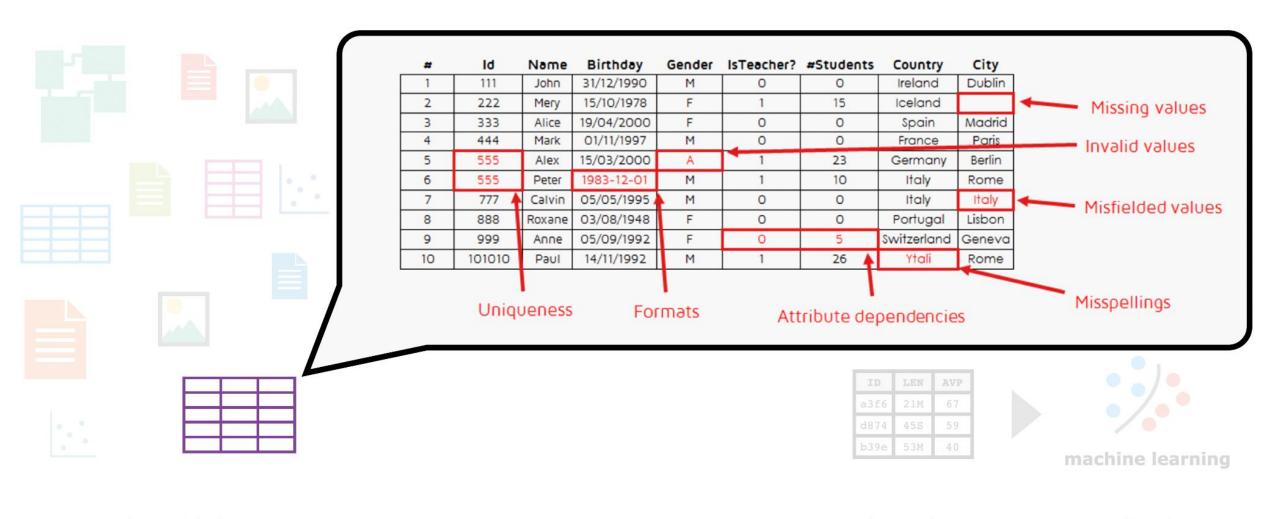
ID	LEN	AVP
a3f6	21M	67
d874	45S	59
b39e	53M	40

machine learning

clean data

applications

Even Tables Have Problems



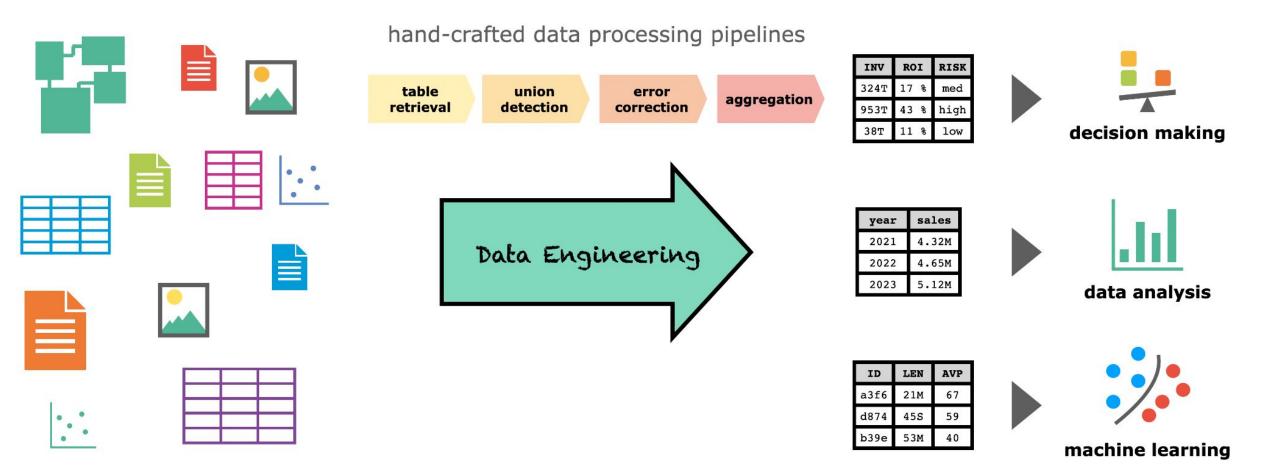
real-world data

an data

applications

Illustration adapted from https://medium.com/@analystsam007/prediction-model-1bc5ea113231.

Data Engineering Bridges This Gap



real-world data

applications

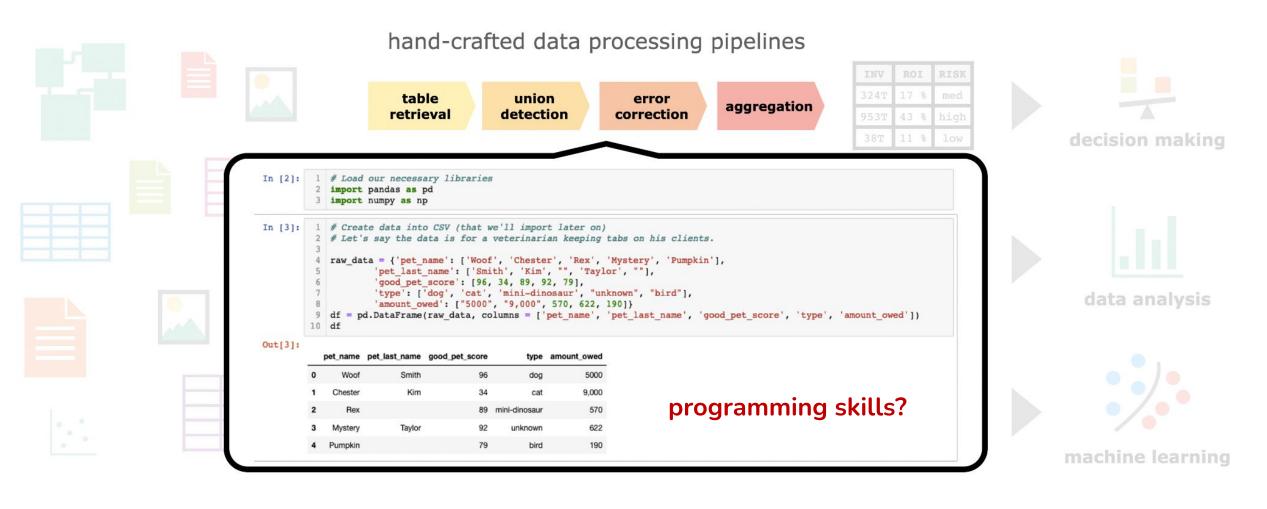
NHR4

CFS

NHR for Computational Engineering

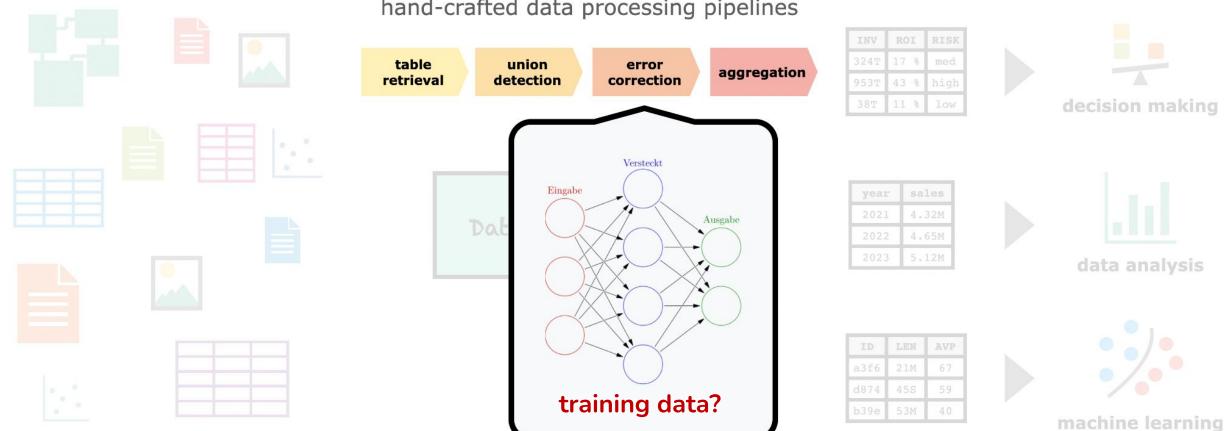
Science

Data Engineering Means Python Code



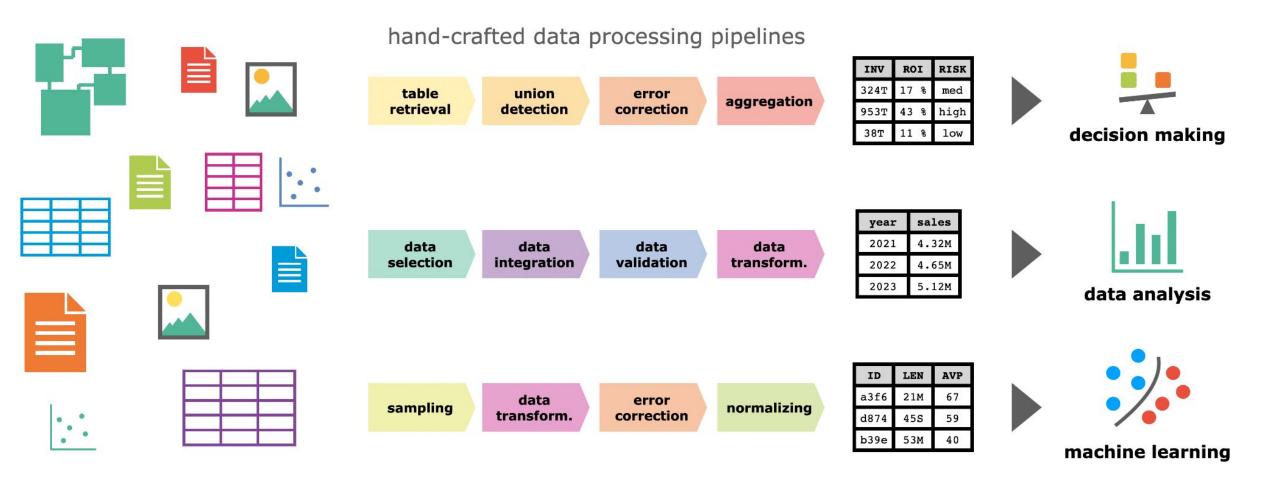
applications

Data Engineering Means ML Models



hand-crafted data processing pipelines

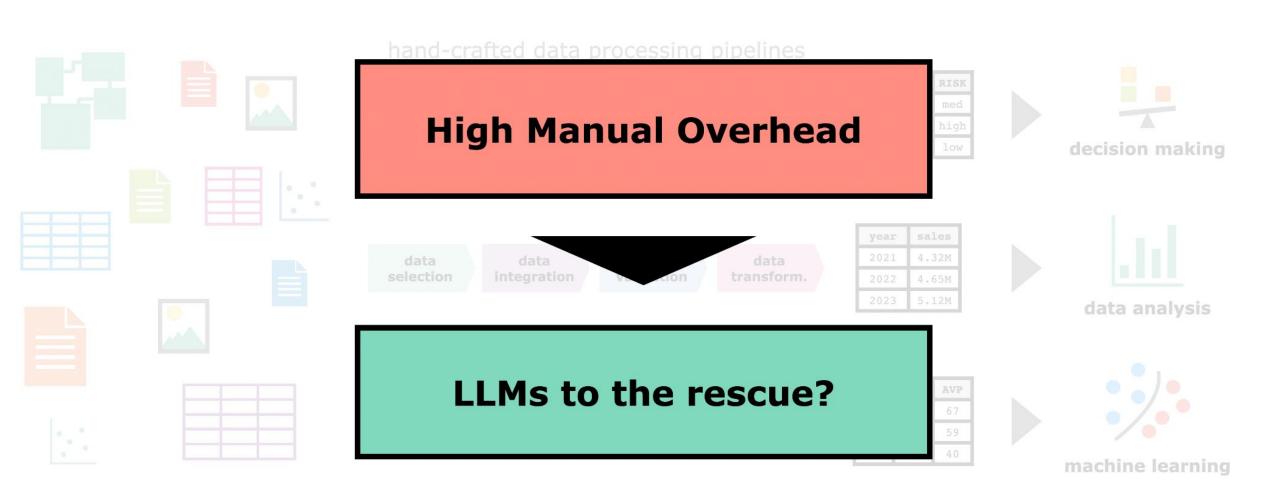
New Task or Data: Start Over



real-world data

applications

Data Engineering Has High Overheads



real-world data

applications

LLMs Can Automate Many Tasks

- entity matching
- error detection
- value imputation
- schema matching

...

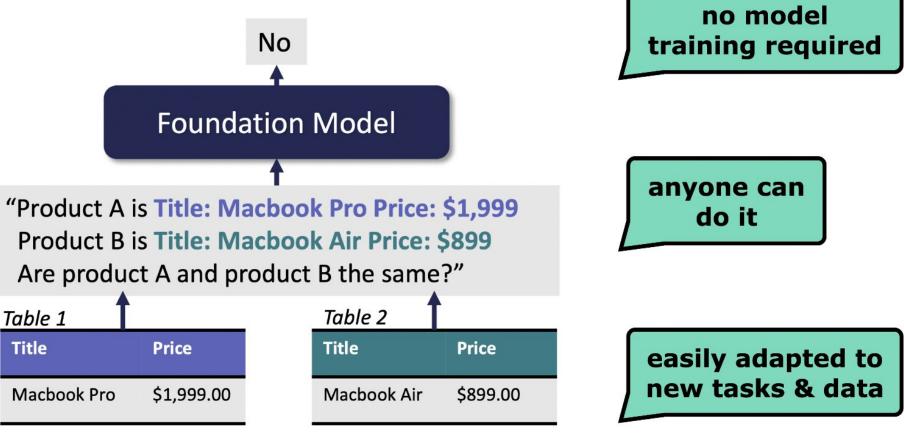


Illustration adapted from Narayan et al. (2022).

Narayan et al. (2022) Can Foundation Models Wrangle Your Data?

Seminal Work: Narayan et al. (2022)

Can Foundation Models Wrangle Your Data?

Avanika Narayan Stanford University avanika@cs.stanford.edu Ines Chami Numbers Station ines.chami@numbersstation.ai Laurel Orr Stanford University lorr1@cs.stanford.edu chu

Christopher Ré Stanford University chrismre@cs.stanford.edu

ABSTRACT

Foundation Models (FMs) are models trained on large corpora of data that, at very large scale, can generalize to new tasks without any task-specific finetuning. As these models continue to grow in size, innovations continue to push the boundaries of what these models can do on language and image tasks. This paper aims to understand an underexplored area of FMs: classical data tasks like cleaning and integration. As a proof-of-concept, we cast five data cleaning and integration tasks as prompting tasks and evaluate the performance of FMs on these tasks. We find that large FMs generalize and achieve SoTA performance on data cleaning and integration tasks, even though they are not trained for these data tasks. We identify specific research challenges and opportunities that these models present, including challenges with private and domain specific data, and opportunities to make data management systems more accessible to non-experts. We make our code and experiments publicly available at: https://github.com/HazyResearch/fm_data_tasks.

PVLDB Reference Format:

Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. Can Foundation Models Wrangle Your Data?. PVLDB, 16(4): 738 - 746, 2022. doi:10.14778/3574245.3574258

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at https://github.com/HazyResearch/fm_data_tasks.

1 INTRODUCTION

Foundation Models (FMs) [19] are models trained on broad data that can be adapted to a wide range of downstream tasks. These models

Figure 1: A large FM can address an entity matching task using prompting. Rows are serialized into text and passed to the FM with the question "Are products A and B the same?". The FM then generates a string "Yes" or "No" as the answer.

A natural question that arises is whether these advances can benefit hard classical *data tasks* (e.g. data cleaning and integration). While it is clear that FMs benefit text-intensive tasks, it is not clear whether these models can be applied to data tasks over structured data. The symbols commonly found in structured data (e.g. dates, numbers, alphanumeric codes) are less frequent in natural language text so it is unclear that FMs possess the ability to reason over them. Moreover, since FMs are trained to predict the next word, it is nonobvious that they can work out-of-the-box on complex data tasks. This paper explores the aforementioned question and introduces a new research vision for leveraging FMs for data management, focusing on data cleaning and integration tasks—two keys steps in

LLMs for Data Engineering: What works?

Overview over Data Engineering Tasks

- Semantic Column Type Annotation
- Data Imputation
- Error Detection
- Table Question Answering
- Text-to-SQL
- Data Transformation

Suggesting column types

Column Type Annotation = annotating table columns with *semantic types* from an ontology

	title	author	year	?
	↑	↑		
col0	col1	col2	col3	col4
VLDB	Similarity search in high dimensions via h	A Gionis, P Indyk, R Motwani	1999	3899
VLDB	A quantitative analysis and performance st	R Weber, HJ Schek, S Blott	1998	2251
VLDB		J Madhavan, PA Bernstein, E Rahm	2001	2030
VLDB	STING: A statistical information grid approv	W Wang, J Yang, R Muntz	1997	1956
•••				

Given I	the following table, please specify appropriate semantic types
for the	e columns
col0 (col1 col2 col3 col4
VLDB	Similarity_search_in_high_dimensions_via_hashing A Gionis,
P Indyl	k, R Motwani 1999 3899
VLDB	
search	ntitative_analysis_and_performance_study_for_similarity- _methods_in_high-dimensional_spaces R Weber, HJ Schek, S 1998 2251
	Generic_schema_matching_with_cupid J Madhavan, PA :ein, E Rahm 2001 2030

Here's a suggested mapping of appropriate semantic types for each column in the table:

ChatGPT ~

Column	Example Value	Suggested Semantic Type
col0	VLDB	Conference/Journal Name
col1	Similarity_search_in_high_dimensions_via_hashing	Paper Title
col2	A Gionis, P Indyk, R Motwani	Authors
col3	1999	Publication Year
col4	3899	Citation Count

These types reflect common metadata associated with scientific publications. Would you like suggestions on how to automatically infer these types from data?

Ask anyth	ing					
+	Search	Q Reason	📌 Deep research	🏽 Create image	()	₽ ↑

Column Type Annotation using ChatGPT

Keti Korini^{1,*}, Christian Bizer¹

¹Data and Web Science Group, University of Mannheim, Mannheim, Germany

Abstract

Column type annotation is the task of annotating the columns of a relational table with the semantic type of the values contained in each column. Column type annotation is an important pre-processing step for data search and data integration in the context of data lakes. State-of-the-art column type annotation methods either rely on matching table columns to properties of a knowledge graph or fine-tune pre-trained language models such as BERT for column type annotation. In this work, we take a different approach and explore using ChatGPT for column type annotation. We evaluate different prompt designs in zero- and few-shot settings and experiment with providing task definitions and detailed instructions to the model. We further implement a two-step table annotation pipeline which first determines the class of the ortical vocabulary. Using instructions as well as the two-step pipeline, ChatGPT reaches I is cores of over 85° in zero- and one-shot setturgs reach a similar F1 score a RoBERTa model needs to be fine-tuned with 356 examples. This comparison shows that ChatGPT is able deliver competitive results for the column type annotation task given no or only a minimal amount of task-specific demonstrations.

Keywords

Table Annotation, Column Type Annotation, ChatGPT, Large Language Models, Prompt Engineering

1. Introduction	RestaurantName	Postal Code	Payment Accepted	Time
Table annotation refers to the task of discovering seman- tic information about elements of a table such as columns,	Friends Pizza	2525	Cash Visa MasterCard	7:30 AM

Column Type Annotation - with examples

LLM Prompt for Column Type Annotation

Instruction

Predict the column types of the following tables. Provide just the user: column types as a JSON list without any introduction or explanation. Column types are: ["account type", "clearing date", …]

STAS

USER: MANDT, STLTY, STLNR, STLAL, STLKN, STASZ, DATUV, TECHV, AENNR, ... 1, F, 47294573, 0, 8, 21, 20210304, , 394729478, , 20210301, ... 1, F, 93618467, 0, 9, 14, 20170121, , 141834612, , 20170120, ... 1, F, 34188479, 0, 21, 34, 20191123, , 560289473, , 20191119, ...

One-shot Example

assist: ["client", "bom category", "bill of material", ...]

BSEG

USER: MANDT, BUKRS, BELNR, GJAHR, BUZEI, BUZID, AUGDT, AUGCP, AUGBL, ... 1, D054, 5930568205, 2013, 5, H, 20140503, 20140501, 9836283674, ... 1, D054, 5829473293, 2021, 7, H, 20221123, 20221119, 3485949047, ... 1, D037, 3168347239, 2012, 43, L, 20120913, 20120831, 7554950694, ...

Table to annotate

Data Imputation & Error Detection

Filling missing values and detecting, if a cell contains an error

П

Tal

Table 2: Data cleaning results, measured in accuracy for data imputation and F1 score for error detection where k is the number of task demonstrations.

Treese totions

Empro Datastin

Data Imputation: Row_ID: 001, Country: England, Capital: ?

lask	Imputation		Error Det	ection
Dataset	Restaurant Buy		Hospital	Adult
HoloClean	33.1	16.2	51.4	54.5
IMP	77.2	96.5	-	-
HoloDetect	-	-	94.4	99.1
GPT3-175B (<i>k</i> =0)	70.9	84.6	6.9	0.0
GPT3-6.7B (<i>k</i> =10)	80.2	86.2	2.1	99.1
GPT3-175B (<i>k</i> =10)	88.4	98.5	97.8	99.1

Row_ID: 004, Country: USA, City: Kyoto

yes / no

Table from Can Foundation Models Wrangle Your Data? Narayan et al. VLDB 2022

Table Question Answering

Answering questions over tabular data

Table						
Rank	Name	and the second second	Combined days			
1	Lou Thesz	3	3,749			
2	Ric Flair	8	3,103			
3	Harley Race	7	1,799			
4	Dory Funk Jr.	1	1,563			
5	Dan Severn	2	1,559			
6	Gene Kiniski	1	1,131			

Question	Answer	Example Type
Which wrestler had the most number of reigns?	Ric Flair	Cell selection
Average time as champion for top 2 wrestlers?	AVG(3749,3103)=3426	Scalar answer

Image from TAPAS: Weakly Supervised Table Parsing via Pre-training. Herzig et al. ACL 2020

Transforming natural language questions to SQL Queries

"How many SELECT state, State Num orders do l COUNT(DISTINCT ID) as num CA 2330 have in each FROM order LLM GROUP BY state state?" WA 921 Execute IsUrgent ID State Priority CreatedOn CompletedOn Text-to-SQL SQL Execution

Image from https://www.numbersstation.ai/text-to-sql-that-isnt/

Text-to-SQL

Wrangling data using Code Generation

Input examples

- Input: "Steel has a density of 7.85 g/cm³"
 Output: {"material": "Steel", "density": "7.85 g/cm³"}
- Input: "Aluminum has a density of 2.70 g/cm³"
 Output: {"material": "Aluminum", "density": "2.70 g/cm³"}
- Input: "Copper has a density of 8.96 g/cm³"
 Output: {"material": "Copper", "density": "8.96 g/cm³"}

Generated code:

python D CODV import json def string_transformation(input_string): if "has a density of" in input_string: material_name, density_value = input_string.split(" has a density of ") result = {"material": material_name, "density": density_value} return json.dumps(result) else: try: density, material = input_string.split(", ") material_name = material.split(": ")[1] density_value = density.split(": ")[1] result = {"material": material_name, "density": density_value} return json.dumps(result) except ValueError: return "Invalid format"

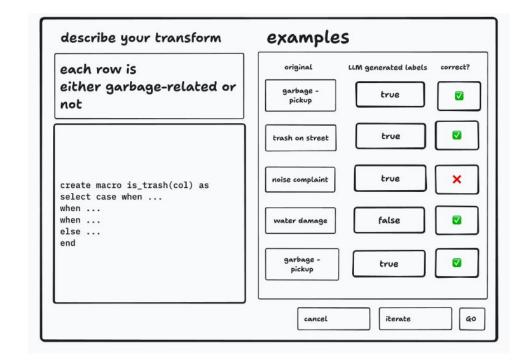
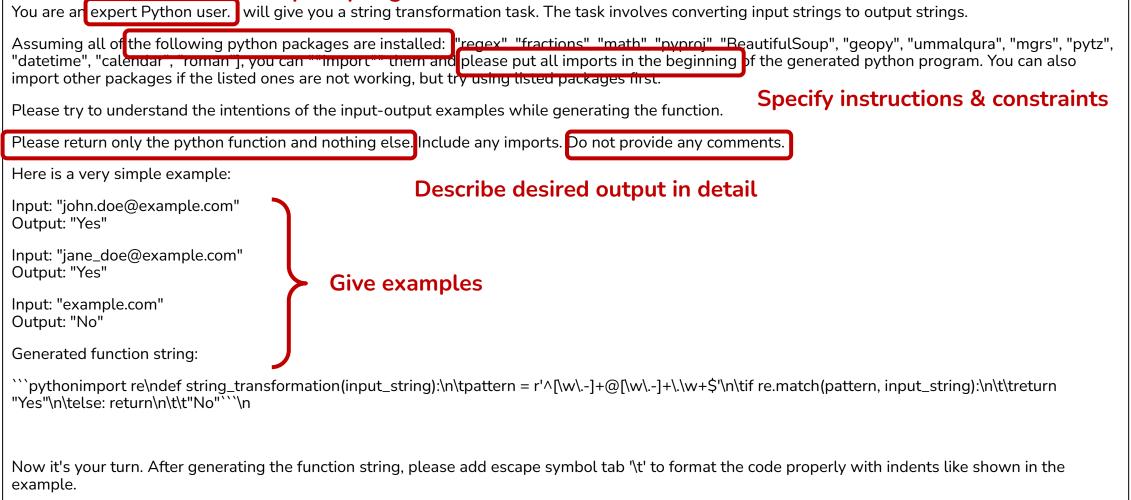


Figure 4: An illustration on UX for human-in-the-loop code generation.

Figure 4 from Towards Efficient Data Wrangling with LLMs using Code Generation. Li and Döhmen. DEEM@SIGMOD 2024

Prompt engineering: Best practices

Role prompting



Promt from Towards Efficient Data Wrangling with LLMs using Code Generation. Li and Döhmen. DEEM@SIGMOD 2024 https://github.com/effyli/efficient_llm_data_wrangling/blob/main/fast_ai_wrangler/promptsTemplate.py

Linearization Techniques

Inputting tables into LLMs:

Compound Name	Molecular Weight (g/mol)	Boiling Point (°C)	Melting Point (°C)		
Water	18.015	100	0		
Ethanol	46.07	78.37	-114.1		
Benzene	78.11	80.1	5.5		

JSON:

```
{
  "O": {
    "Compound Name": "Water",
    "Molecular Weight (g/mol)": 18.015,
    "Boiling Point (°C)": 100,
    "Melting Point (°C)": 0
    },
    "1": {
        "Compound Name": "Ethanol",
        "Molecular Weight (g/mol)": 46.07,
        "Boiling Point (°C)": 78.37,
        "Melting Point (°C)": -114.1
    },
    "2": {
        "Compound Name": "Benzene",
        "
}
```

CSV:

Markdown:

Compound Name, Molecular Weight (g/mol), Boiling Point (°C), Melting Point (°C) Water, 18.015, 100, 0 Ethanol, 46.07, 78.37, -114.1 Benzene, 78.11, 80.1, 5.5

Compound Nam	ne	Molecular Weight				Melting Point	t (°C)
Water		18.015		100		0	
Ethanol	L	46.07	I.	78.37	I	-114.1	
Benzene	1	78.11	1	80.1	1	5.5	

Compound Name is Water. Molecular Weight is 18.015 g/mol. Boiling Point is 100 °C. Melting Point is 0 °C. Compound Name is Ethanol. Molecular Weight is 46.07 g/mol. Boiling Point is 78.37 °C. Melting Point is -114.1 °C. Compound Name is Benzene. Molecular Weight is 78.11 g/mol. Boiling Point is 80.1 °C. Melting Point is 5.5 °C.

LLMs specifically for Tables

- **Table-GPT** [Li et al., 2024]
- TableGPT [Zha et al., 2023]
- TableLlama [Zhang et al., 2024]

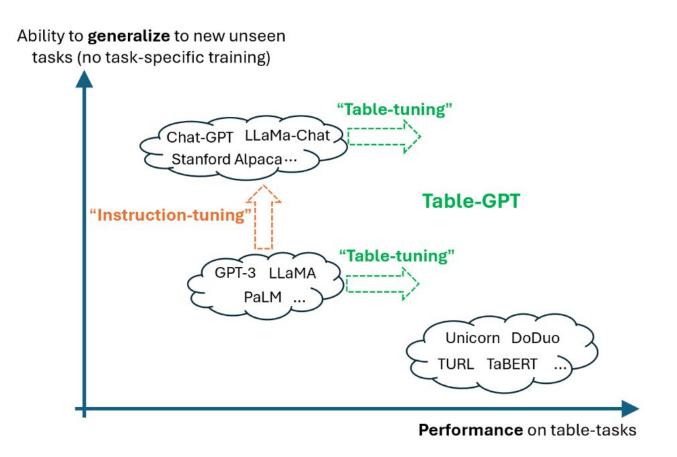
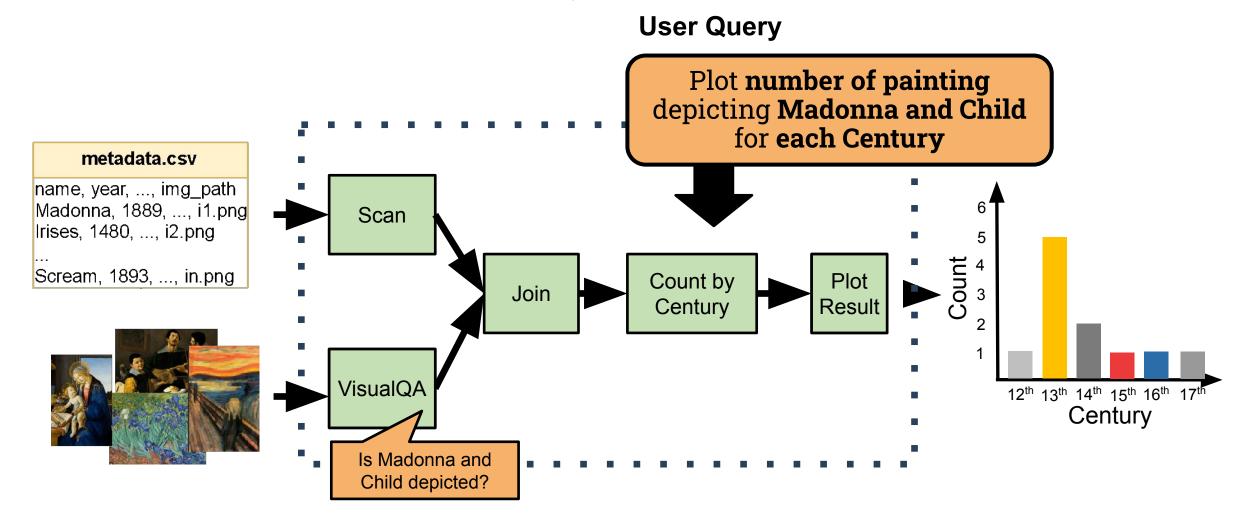


Image from Table-GPT: Table Fine-tuned GPT for Diverse Table Tasks. Li et al. SIGMOD 2024

Multi-Modal Data Analytics [CAESURA]



From CAESURA: Language Models as Multi-Modal Query Planners. Urban and Binnig. CIDR 2024

LLMs for Data Engineering - What works?

Lots of **research** to support users with data engineering

LLMs for data engineering seem to be a promising avenue

LLMs for Data Engineering: What doesn't work (yet)?

LLM Research Based On Web Tables

Adult Dataset for Error Correction

maritalstatus 🏹 🛛 🗧	occupation $ abla$ $ abla$	relationship $ abla$ \Rightarrow	race ∇ \Rightarrow	sex 🏹 🔅	hoursperweek 🏹 🔅	country $ abla$ \ddagger	income $ abla$ \ddagger
Never-married	Other-service	Own-child	White	Male	24	United-States	LessThan0K
Never-married	Other-service	Own-child	White	Male	24	United-States	LessThan0K
Never-married	Other-service	Own-child	White	Male	24	United-States	LessThanOK
Never-married	Prof-specialty	Own-child	White	Male	18-21	United-States	LessTan50K

Real-world Data Looks Different

Example: Enterprise data from SAP

Tables are substantially larger

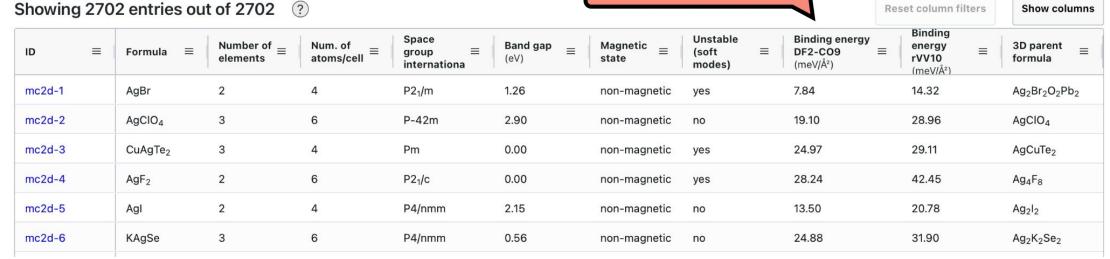
(hundreds of columns and millions of rows)

SAP BSEG (Accounting Document Segment) Table with 425 Columns

MANDT	\$	BUKRS +	BELNR ÷	GJAHR ‡	BUZEI ÷	BUZID ‡	AUGDT ‡	AUGCP ‡	AUGBL ‡	UMSKZ ‡	UMSKS ‡	DMBTR 4
	1	NZ27	6833657	2011	3		201112	20111103	4489623			24,64
	1	NZ27	6754436286	2021	4	К	0	0				345,98
	1	AU87	5887390076	2003	4	К	0	0				77,23
	1	E013	4665112983	2006	3	L	0	0				0,34
	1	D001	3377752912	2015	3	L	0	0				2.877
	1	NZ27	4488765981	2015	7	К	0	0				1.776
	1	IIS65	4488765982	2019	7	к	P	A				246.29

Bodensohn et al. (2024) LLMs for Data Engineering on Enterprise Data

Real-world Data Looks Different



Complex Units

Highly Symbolic Values

https://mc2d.materialscloud.org

How does this affect LLMs?

Real-world enterprise data vs. existing corpora

SAPCTA real-world customer data from SAP systems

GitTablesCTA

CSV files from GitHub (Hulsebos et al. 2021)

SportsTables

web tables about sports (Langenecker et al. 2023)

Drill-downs into data types, table size, and sparsity

Example task: Column Type Annotation (CTA)

Bodensohn et al. (2024) LLMs for Data Engineering on Enterprise Data

Column Type Annotation (CTA)

= annotating table columns with semantic types

	title	author	year	
		†		
col0	col1	col2	col3	col4
VLDB	Similarity_search_in_high_dimensions_via_l	h≱A Gionis, P Indyk, R Motwani	1999	3899
VLDB	A quantitative analysis and performance	s R Weber, HJ Schek, S Blott	1998	2251
VLDB	Generic schema matching with cupid	J Madhavan, PA Bernstein, E Rahm	2001	2030
VLDB	STING: A statistical information grid appr	o•W Wang, J Yang, R Muntz	1997	1956
	••••			

Real-World Data Is Challenging

STAS

MANDT, STLTY, STLNR, STLAL, STLKN, STASZ, DATUV, TECHV, AENNR, ...

1,F,47294573,0,8,21,20210304,,394729478,,20210301,... 1,F,93618467,0,9,14,20170121,,141834612,,20170120,... 1,F,34188479,0,21,34,20191123,,560289473,,20191119,...

With column names in prompt

1,F,47294573,0,8,21,20210304,,394729478,,20210301,... 1,F,93618467,0,9,14,20170121,,141834612,,20170120,... 1,F,34188479,0,21,34,20191123,,560289473,,20191119,...

Without column names in prompt



What causes this performance drop?

Numerical data vs. non-numerical data

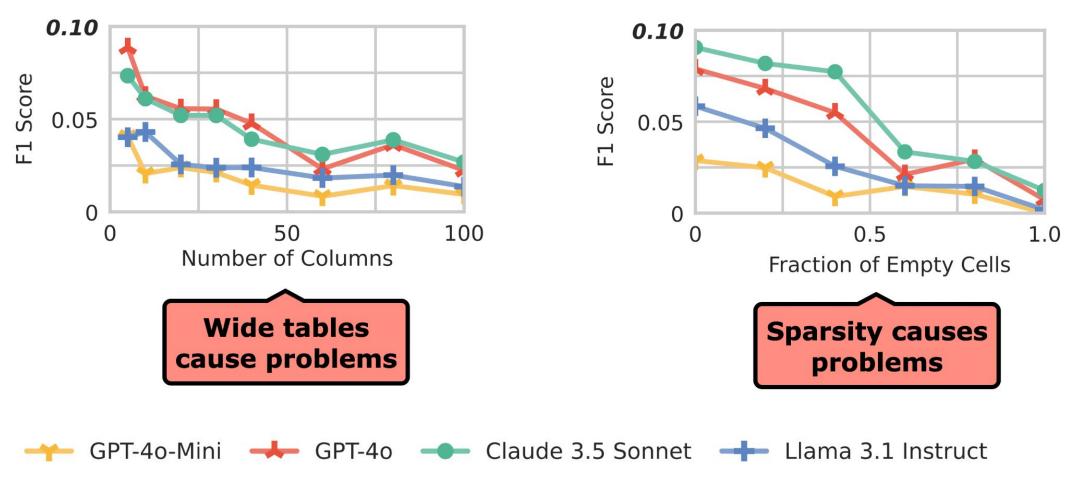
	GitTablesCTA		SportsTables		SAP CTA	
Data Types	abc	123	abc	123	abc	123
GPT-4o-Mini	0.97	0.95	0.68	0.53	0.11	0.03
GPT-40	0.99	0.98	0.87	0.91	0.31	0.16
Claude 3.5 Sonnet	0.98	0.97	0.80	0.97	0.41	0.27
Llama 3.1 Instruct	0.94	0.96	0.85	0.72	0.15	0.05

Real-world numerical data is substantially harder

Bodensohn et al. (2024) LLMs for Data Engineering on Enterprise Data

What causes this performance drop?

Table size



Sparsity

Bodensohn et al. (2024) LLMs for Data Engineering on Enterprise Data

Real-world Data Is Challenging

Large performance gap between benchmarks and real-world use cases!

Causes:

- Non-descriptive schemas
- Large and wide tables
- Non-expressive values
- Sparsity

Next: real-world tasks

Real-world Tasks Are Also Challenging

Existing research looks at isolated problems:

Column type annotation, error detection, missing value imputation, ...

Real-world problems are often compound tasks with multiple steps: Case study: merge customer datasets from company A and company B

Schema Matching

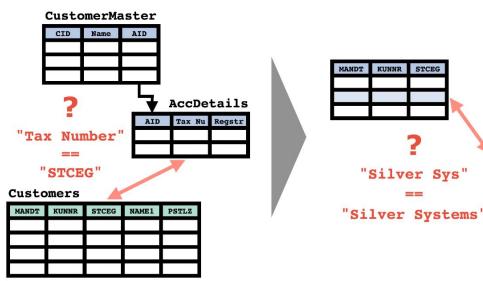
Entity Matching

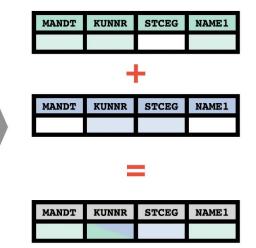
KUNNR

STCEG

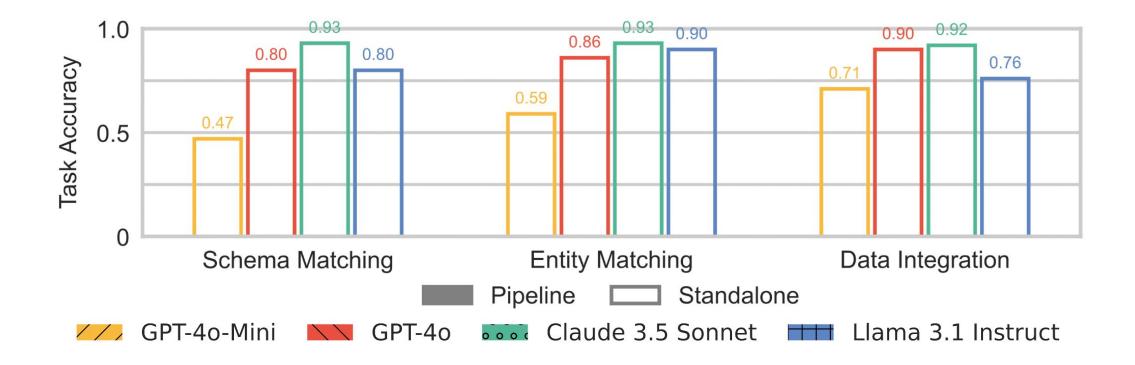
MANDT

Record Merging

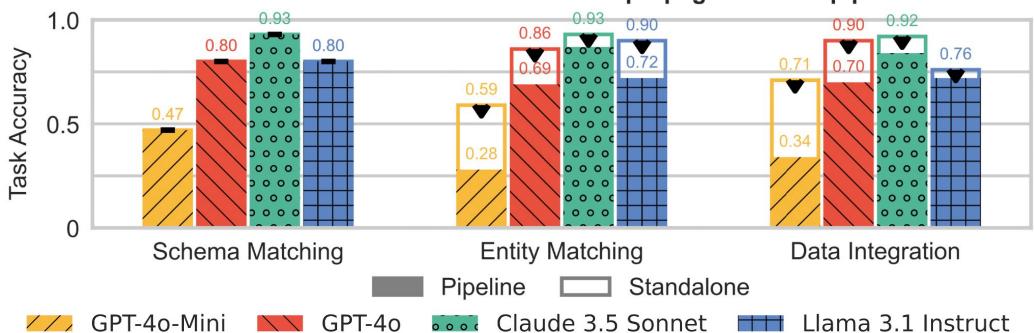




Standalone vs. Pipeline Execution



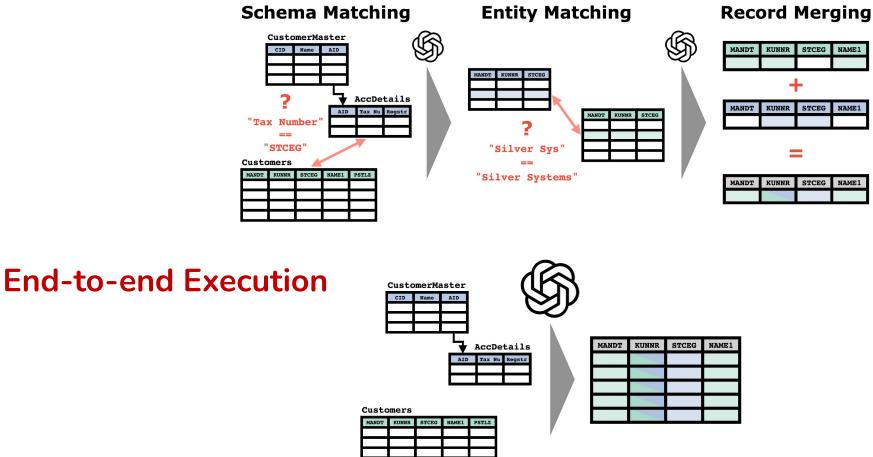
Standalone vs. Pipeline Execution



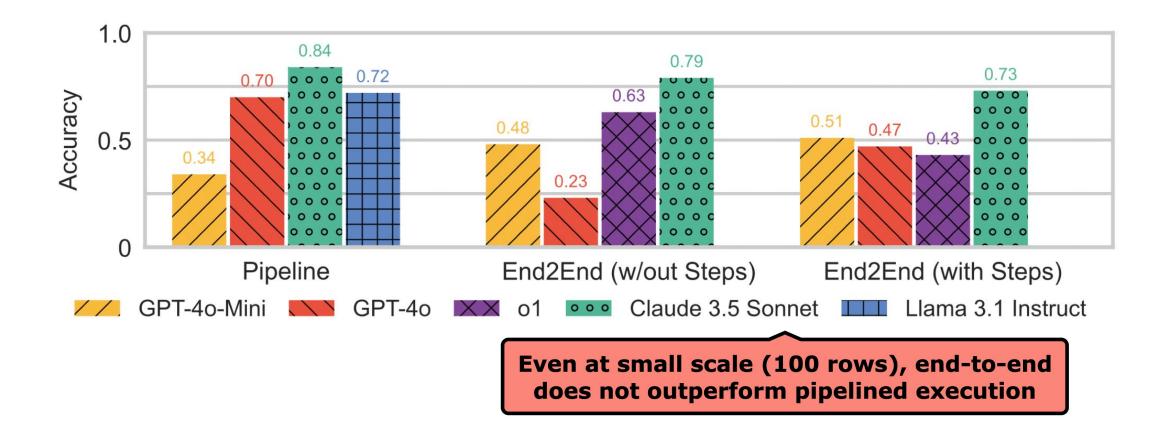
Errors propagate in task pipeline

Pipeline vs. End-to-end Execution

Pipeline Execution



Pipeline vs. End-to-end Execution



End-to-end Execution - Scaling

Domain Knowledge

LLMs encode knowledge from their pre-training corpora in their parameters \rightarrow "parametric knowledge"

It is heavily skewed towards common knowledge that is publicly available.

Example: Text-to-SQL vs. Text-to-SIGNAL

Text-to-SQL

What is the number of cars with more than 4 cylinders?

SELECT COUNT(*) FROM cars_data WHERE cylinders > 4

Illustration adapted from Yu et al. (2018).

SQL is very popular. \rightarrow lots of public documentation, Q&A, ...

How long is the average cylce time of all casses of this process?

SELECT AVG((SELECT LAST(end_time))

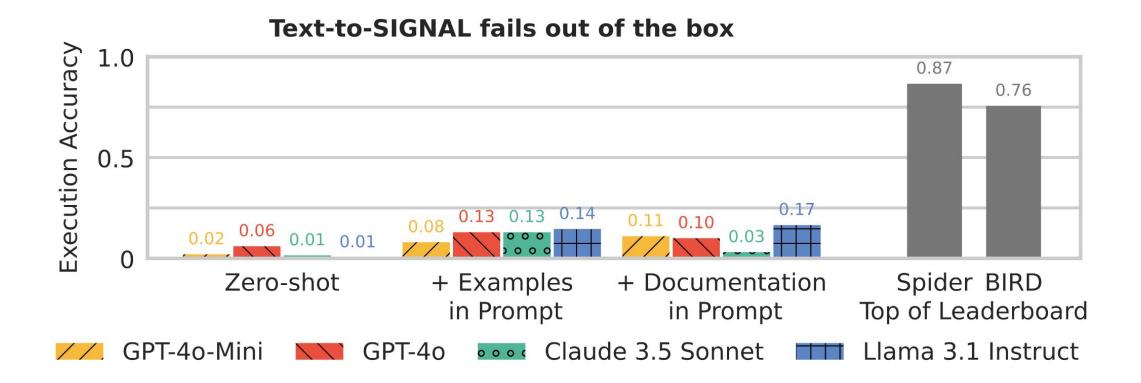
(SELECT FIRST(end_time))) FROM defaultview-255

SIGNAL is a proprietary language.

 \rightarrow little public documentation, Q&A, ...

process mining language

Text-to-SIGNAL vs. Text-to-SQL



What doesn't work (yet)?

Data engineering with LLMs is harder than public benchmarks make it look!

Challenges:

- Real-world data: table sizes, descriptiveness, sparsity, data types, ...
- Real-world tasks: compound tasks, task-specific views, ...
- Background knowledge: proprietary/little-known tools, ...

... and of course the **high costs**

LLMs for Data Engineering: What's to come?

Recap

6 There is lots of research on using LLMs for data engineering.

Support users at many tasks, e.g. by writing Python code

There is still a large gap between research and real-world use cases.

- Low reliability on large data
- Fail at solving complex tasks
- Lack domain-specific background knowledge
- High costs

What's to come?

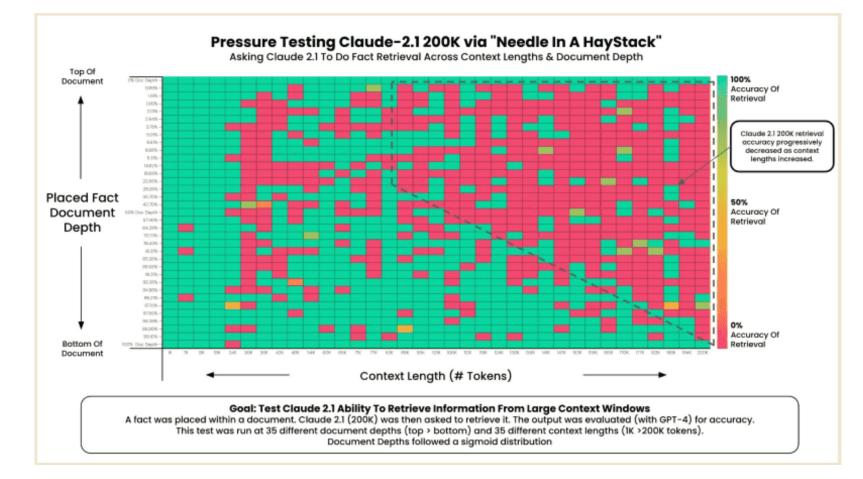
Larger Context Windows

	Context Window	Max. Output Tokens	Amount of Text
OpenAl GPT-2	1,024	1,024	2.8 KB
OpenAI GPT-3.5-Turbo	16,385	4,096	34.9 KB
OpenAI GPT-4-Turbo	128,000	4,096	272.3 KB
OpenAl GPT-4o	128,000	16,384	272.3 KB
OpenAl o1	200,000	100,000	425.5 KB
Anthropic Claude 3.7 Sonnet	200,000	64,000	425.5 KB
OpenAl GPT-4.1	1,047,576	32,768	2.2 MB
Meta Llama 4 Scout	10,000,000	?	21.3 MB

Models can process large tables?

Larger Context Windows

Can it use the full context?



https://x.com/GregKamradt/status/1727018183608193393

Larger Context Windows

1 PROMPT = """

```
2
```

3 Human: <context>

```
4 {context}
```

```
5 </context>
```

6

7 What is the most fun thing to do in San Fr ancico based on the context? Don't give in formation outside the document or repeat y our findings

8

9 Assistant: Here is the most relevant sente nce in the context:"""

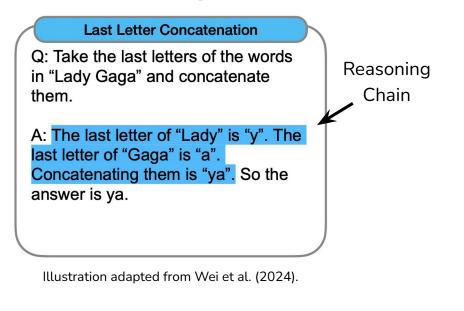
0 " 7 9 14 8 21 29 7 Depth Percent 36 43 6 50 57 5 64 4 71 -79 -86 Context Length

Evaluation with updated prompt (Anthropic)

https://www.anthropic.com/news/claude-2-1-prompting

Reasoning - Inference Time Scaling

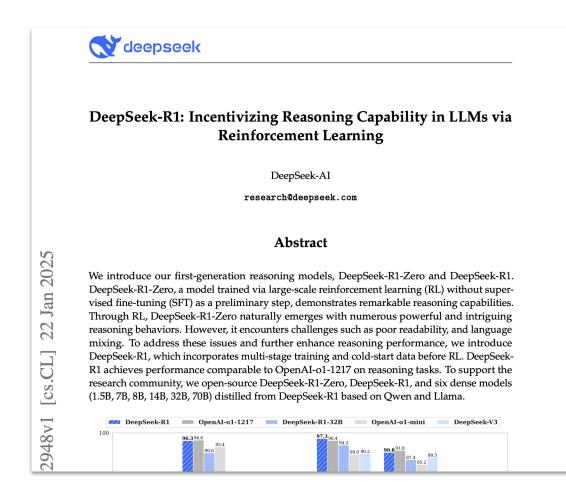
Chain-of-Thought:



Inference Time Scaling:

Longer reasoning chain = better answers? Larger models \rightarrow generate more output tokens

How do you get the model to reason?



Wei et al. (2024) Chain-of-thought prompting elicits reasoning in large language models

Reasoning for Data Engineering

Ziv:2504.15077v2 [cs.LG] 27 Apr 2025

Simone Papicchio Politecnico di Torino, Turin, Italy EURECOM, Biot, France simone.papicchio@polito.it simone.papicchio@eurecom.fr

Luca Cagliero Politecnico di Torino, Turin, Italy luca.cagliero@polito.it Simone Rossi EURECOM, Biot, France simone.rossi@eurecom.fr

Paolo Papotti EURECOM, Biot, France paolo.papotti@eurecom.fr

Abstract

Large Language Models (LLMs) have shown impressive capabilities in transforming natural language questions about relational databases into SQL queries. Despite recent improvements, small LLMs struggle to handle questions involving multiple tables and complex SQL patterns under a Zero-Shot Learning (ZSL) setting. Supervised Fine-Tuning (SFT) partially compensate the knowledge deficits in pretrained models but falls short while dealing with queries involving multihop reasoning. To bridge this gap, different LLM training strategies to reinforce reasoning capabilities have been proposed, ranging from leveraging a thinking process within ZSL, including reasoning traces in SFT, or adopt Reinforcement Learning (RL) strategies. However, the influence of reasoning on Text2SQL performance is still largely unexplored.

This paper investigates to what extent LLM reasoning capabilities influence their Text2SQL performance on four benchmark datasets. To this end, it considers the following LLM settings: (1) ZSL, including general-purpose reasoning or not; (2) SFT, with and without task-specific reasoning traces; (3) RL, exploring the use of

Agents

"a system that can use an LLM to **reason through a problem**, **create a plan** to solve the problem, and **execute the plan** with the help of a **set of tools**"

template = """GENERAL INSTRUCTIONS

Your task is to answer questions. If you cannot answer the question, request a helper or use a tool. Fill with Nil where no tool or helper is required.

AVAILABLE TOOLS

Search Tool

Math Tool

AVAILABLE HELPERS - Decomposition: Breaks Complex Questions down into simpler subparts

CONTEXTUAL INFORMATION <No previous questions asked>

QUESTION How much did the revenue grow between Q1 of 2024 and Q2 of 2024?

ANSWER FORMAT {"Tool_Request": "<Fill>", "Helper_Request "<Fill>"}"""

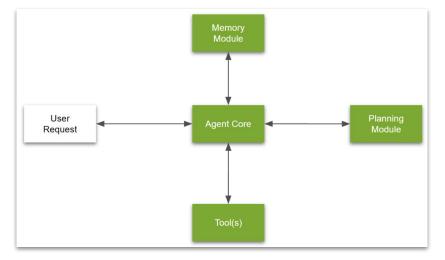


Illustration adapted from NVIDIA.

Illustration adapted from NVIDIA.

https://developer.nvidia.com/blog/introduction-to-llm-agents

Agents for Data Engineering

SQL-Factory: A Multi-Agent Framework for High-Quality and Large-Scale SQL Generation

Jiahui Li Zhejiang University li.jiahui@zju.edu.cn

Yunjun Gao Zhejiang University gaoyj@zju.edu.cn

ABSTRACT

S

202

May

B

S

Ö

:2504.14837v4

High quality SQL corpus is essential for intelligent database. For example, Text-to-SQL requires SQL queries and corresponding natural language questions as training samples. However, collecting such query corpus remains challenging in practice due to the high cost of manual annotation, which highlights the importance of automatic SQL generation. Despite recent advances, existing generation methods still face limitations in achieving both diversity and costeffectiveness. Besides, many methods also treat all tables equally, which overlooks schema complexity and leads to under-utilization of structurally rich tables. To address these issues, this paper proposes a multi-agent framework for high-quality and large-scale SQL generation, dubbed SQL-Factory. It decomposes the generation process into three collaborative teams: the Generation Team explores diverse query structures using a powerful language model, the Expansion Team scales promising patterns via a lightweight language model, and the Management Team adaptively schedules the workflow and evaluates the quality of synthesized queries. This modular framework ensures a balanced trade-off between diversity, scalability, and generation cost. We apply SQL-Factory to four widely used benchmarks and generate over 300,000 SQL queries with less than \$200 API cost. Our generated queries achieve higher diversity compared to other methods, and extensive experiments demonstrate that the generated queries significantly improve the model performance in various downstream tasks.

Tongwang Wu Zhejiang University tongwang.wu@zju.edu.cn

Yajie Feng Global Technical Service Dept, Huawei Technologies fengyajie@huawei.com Yuren Mao* Zhejiang University yuren.mao@zju.edu.cn

Huaizhong Liu Global Technical Service Dept, Huawei Technologies liuhuaizhong@huawei.com

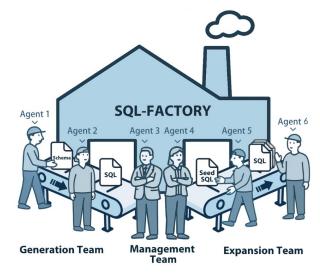


Figure 1: A conceptual illustration of SQL-Factory's multiagent framework. The framework consists of six agents: (1) Table Selection Agent, (2) Generation Agent, (3) Management Agent, (4) Critical Agent, (5) Seed Selection Agent and (6) Expansion Agent.

1 INTRODUCTION

Michaela Bleuel Dr. Thorsten Reimann

office@nhr.tu-darmstadt.de www.nhr4ces.de

REFORCENT VOM

Bundesministerium für Bildung und Forschung

