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Machine Learning in Materials Science




Machine Learning already helps Materials Science!
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Millions of new materials discovered
with deep learning
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Amil Merchant and Ekin Dogus Cubuk
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Machine Learning already helps Materials Science!
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Artificial Intelligence

Millior
Artificial Intelligence for Materials Science

Welcome to the Artificial Intelligence for Materials Science group, where we are at the forefront of integrating
cutting-edge Al technologies into the world of materials discovery and design. Our research is dedicated to
transforming how materials are conceptualized, characterized, and optimized by developing next-generation Al
tools and frameworks tailored to the unique challenges of materials science
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Some Statistics...
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Jain A. Machine learning in materials research: developments over the last decade and
challenges for the future. ChemRxiv. 2024
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Machine Learning as a tool
“[...] our new deep learning tool that dramatically increases the speed and
efficiency of discovery by predicting the stability of new materials.” — Google

DeepMind Blog on GNoME

Thus, materials science researchers should be able to use ML as an every
day tool! We shouldn’t expect them to get ML experts!

<

That’s where AutoML can help!
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What is AutoML?




Goals of AutoML
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What can AutoML do already?
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Example: Hyperparameter Optimization (Optuna)

learn predict .
- p stability score

n_trees, tree_depth, min_Jleaves, ...
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Example: Hyperparameter Optimization (Optuna)

8 - % p» stability score
4

define HPs (n_trees, ...) define budget define criteria
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Example: Hyperparameter Optimization (Optuna)

This only costs you a few lines of code!

import optuna

import sklearn.datasets

import sklearn.ensemble

import sklearn.model selection
import sklearn.svm

def objective(trial):
iris = sklearn.datasets.load iris()
X, y = iris.data, iris.target

rf max depth = trial.suggest_int("rf max depth", 2, 32, log=True)

classifier obj = sklearn.ensemble.RandomForestClassifier(
max_depth=rf_max_depth, n_estimators=1

score = sklearn.model_selection.cross_val_score(classifier _obj, x, y, n_jobs=-1, cv
accuracy = score.mean()
return accuracy

name == " main
study = optuna.create_study(directio
study.optimize(objective, n_trials=100)
print(study.best trial)
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Example: Hyperparameter Optimization (OptFormer)

\ LY
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"~ ldea: Learn to mimic HPO algorithms.

~
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((f' Approach: Treat it as a language modeling task where the next token to
predict is the next configuration to test!

= e — { )
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Example: TabPFN

\ LY
~ .

"~ ldea: Learn to directly mimic entire ML algorithms/pipelines for tabular data.

((f, Approach: Treat regression/classification as a language modeling task where
the next token to predict is the next column of the dataset!

4 )

train y train

> |  TabPFN >y,

X ?

k test /
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Challenges for AutoML: Acquiring Users

Survey of machine-learning experimental methods at
NeurIPS2019 and ICLR2020

Xavier Bouthillier XAVIER.BOUTHILLIER@UMONTREAL.CA
Mila
Montréal, QC, Canada

Gaél Varoquaux GAEL.VAROQUAUX@INRIA.FR
Inria Saclay

Palaiseau, France

and

Mila

Montréal, QC, Canada

Abstract

How do machine-learning researchers run their empirical validation? In the context of a
push for improved reproducibility and benchmarking, this question is important to develop
new tools for model comparison. This document summarizes a simple survey about experi-
mental procedures, sent to authors of published papers at two leading conferences, NeurlPS
2019 and ICLR 2020. It gives a simple picture of how hyper-parameters are set, how many
baselines and datasets are included, or how seeds are used.
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Challenges for AutoML: Acquiring Users
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Challenges for AutoML: Giving Control to Users

7wBO: AUGMENTING ACQUISITION FUNCTIONS WITH
USER BELIEFS FOR BAYESIAN OPTIMIZATION

Hyperparameter Optimization via Interacting with
Probabilistic Circuits

Large Language Models for Automated Data Science:
Introducing CAAFE for Context-Aware Automated
Feature Engineering
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Challenges for AutoML: Large Models

AutoML to train large models
& - X
- large models to facilitate AutoML @ “
2.9 -
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What’s next in AutoML?

AutoML

ML Model
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Input Sets
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Example: Pix2Code

Object extraction &

task formulation
Object
extractor h
Task T ¢
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Pix2Code

Code

Model ¢

Program
Synthesis

same shape

PZ
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zp1

Train

Update
Wlth Rram
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Library L

Base primitives

Abstracted primitives

same shape x
same color x

[all same color x |7

Interpret

"All objects are spheres"

Program P

(Ax ([forall | ( [same shape ]o) x)

Wiist et al. Pix2Code: Learning to Compose Neural Visual Concepts as Programs. UAI 2024.
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Prospects for AutoML in Materials Science

22



HuggingGPT for Materials Science?

LLM as Controller ~ HuggingFace

x ~ HuggingGPT
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it =T

Prediction ~ facebook/
Tl |== detr-resnet-101 I

Can you describe this picture and count how
many objects in the picture?

. S II Model ‘( . B
A text can describe the given image: a herd of . Selection —> IIT Task Execution
giraffes and zebras grazing in a fields. In @ L= J
addition, there are five detected objects as

' ¥ nlpconnet/
Prediction .. Vit-gpt2-image-captioning

giraffe with score 99.9%, zebra with score 99.7%, zebra
with 99.9%, giraffe with score 97.1% and zebra with
score 99.8%. The bounding boxes are shown in the
above image. | performed image classification, object
detection and image caption on this image. Combining 4
the predictions of '~

, = and ¥

models, | get the results for you.

IV Response
Generation

Shen et al. HuggingGPT: Solving Al Tasks with ChatGPT and its Friends in Hugging Face. NeurlPS 2023.
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HuggingGPT for Materials Science?

x ~ HuggingGPT

make the material more robust against high

ﬁ] Analyze the data from my experiments and
temperatures.

\

LLM as Controller ~ HuggingFace

~

I TaSk I_',' = m- —

| analyzed your data using the TabPFN model to
predict the stability of the material based on the
features in your dataset. Then, this model was
used to guide the discovery of similar materials
where the discovery was done using GNoME.
Here is the most heat resistant material with highly
similar properties as the one you requested:
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Shen et al. HuggingGPT: Solving Al Tasks with ChatGPT and its Friends in Hugging Face. NeurlPS 2023.
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Interactive Bayesian Optimization for HPO
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Neural Architecture Search (NAS) for Material Discovery

.
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Neural Architecture Search (NAS) for Material Discovery

D
Synflow = Z (0;,Veg,L)
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Search Space D
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Distributed NAS and HPO (FEATHERS)
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End-to-End AutoML Systems

Framework Based on

auto-sklearn BO, Meta-Learning

H20 Stacking

AutoKeras BO based NAS
AutoGluon Multi-Layer Stacking, BO
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Language
Python
Python/R
Python

Python
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LLMs + End-to-End AutoML Systems

- —> @ > AutoML System
| have the following
task: ... Configure
AutoGluon for me. result
~ .~
code :
’ > - Python Execution

| have the following

task: ...
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Use what AutoML has to offer!

e there are robust libraries and frameworks for HPO = this can substantially
decrease efforts for you and yield better results!

e similarly, NAS helps you in designing neural networks efficiently

e end2end systems like AutoWeka can act as a good baseline for your
evaluation » make use of it!

e on tabular data, TabPFN can automate large parts of the ML lifecycle already
with quite high accuracy

31
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How can Materials Science help AutoML?
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Materials Science gives AutoML access to new tasks
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Structured Search Spaces
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this should be reflected in search
spaces of AutoML systems!

we can learn priors over such
structured search spaces based on
experimental data
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Structured Search Spaces

train

GPT

generate

Architectures and
results from former
experiments
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Materials Science can teach us about AutoML's usability

[ AutoML

[ LLM } N
S
/ ystem 3
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Getting Insights into AutoML decisions: SOTA

assess importance of hyperparameters on the final
model performance

get a symbolic representation of hyperparameter
influences on model performance
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Getting Insights into AutoML decisions: Next steps

causal explanations: why was a certain algorithm
configuration chosen? What if we had decided
differently?

E + symbolic causal explanation = provides not just the
structure but also a symbolic representation of

dependencies among decisions
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Materials Science can teach us about user needs

e assumptions made in human-centered AutoML are often based on intuition
and common sense, but are not based on empirical findings

= i
o Machine : /
Learning O
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Causal AutoML

Science is all about causation: Materials Science could
help the AutoML community to strive for AutoML systems
for causal learning, enabling automatic discovery of

cause-effect relations in experimental data!
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The Automated Statistician
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The Automated Statistician Researcher?

how can | test my
hypothesis?

Experiment
how to conduct
Hypothesis the experiment?
‘\ Observations
. don’t forget the

what might explain my human researcher
observations? - in the loop!
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Questions?
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