AutoML Meets Materials Science

Automating Insights and Innovation

Agenda

Machine Learning in Materials Science

What is AutoML?

Prospects for AutoML in Materials Science

How can Materials Science help AutoML?

Machine Learning in Materials Science

Machine Learning already helps Materials Science!

Millions of new materials discovered with deep learning

29 NOVEMBER 2023

Amil Merchant and Ekin Dogus Cubuk

Machine Learning already helps Materials Science!

Artificial Intelligence for Materials Science

Welcome to the Artificial Intelligence for Materials Science group, where we are at the forefront of integrating cutting-edge AI technologies into the world of materials discovery and design. Our research is dedicated to transforming how materials are conceptualized, characterized, and optimized by developing next-generation AI tools and frameworks tailored to the unique challenges of materials science

Some Statistics...

Jain A. Machine learning in materials research: developments over the last decade and challenges for the future. ChemRxiv. 2024

200 300 400 500 0 100 600 Random forest XGBoost Gradient boosting Deep learning Support Vector Networks SHAP model interpretation ResNet Gaussian Processes t-SNE

Machine Learning as a tool

"[...] our new deep learning **tool** that dramatically increases the speed and efficiency of discovery by predicting the stability of new materials." – Google DeepMind Blog on GNoME

Thus, materials science researchers should be able to use ML as an every day tool! We shouldn't expect them to get ML experts!

What is AutoML?

Goals of AutoML

What can AutoML do already?

MI Lifecycle image from: https://amansingh-javatpoint.medium.com/machine-learning-life-cycle-7b0e5f940097 AutoML Meets Materials Science 100nas Sengi AlML Lab 10 Dalmstadt | May 08th 2025 **Example: Hyperparameter Optimization (Optuna)**

n_trees, tree_depth, min_leaves, ...

Example: Hyperparameter Optimization (Optuna)

Example: Hyperparameter Optimization (Optuna)

This only costs you a few lines of code!

```
import optuna
import sklearn.datasets
import sklearn.ensemble
import sklearn.model selection
import sklearn.svm
def objective(trial):
   iris = sklearn.datasets.load iris()
   x, y = iris.data, iris.target
    rf max depth = trial.suggest_int("rf max depth", 2, 32, log=True)
    classifier obj = sklearn.ensemble.RandomForestClassifier(
            max depth=rf max depth, n estimators=10
    score = sklearn.model selection.cross val score(classifier obj, x, y, n jobs=-1, cv=3)
   accuracy = score.mean()
    return accuracy
if name == " main ":
    study = optuna.create study(direction="maximize")
    study.optimize(objective, n trials=100)
    print(study.best_trial)
```

Example: Hyperparameter Optimization (OptFormer)

Idea: Learn to mimic HPO algorithms.

Approach: Treat it as a language modeling task where the next token to predict is the next configuration to test!

Example: TabPFN

Idea: Learn to directly mimic entire ML algorithms/pipelines for tabular data.

Approach: Treat regression/classification as a language modeling task where the next token to predict is the next column of the dataset!

Challenges for AutoML: Acquiring Users

Survey of machine-learning experimental methods at NeurIPS2019 and ICLR2020

Xavier Bouthillier

Mila Montréal, QC, Canada

Gaël Varoquaux

Inria Saclay Palaiseau, France and Mila Montréal, QC, Canada XAVIER.BOUTHILLIER@UMONTREAL.CA

GAEL.VAROQUAUX@INRIA.FR

Abstract

How do machine-learning researchers run their empirical validation? In the context of a push for improved reproducibility and benchmarking, this question is important to develop new tools for model comparison. This document summarizes a simple survey about experimental procedures, sent to authors of published papers at two leading conferences, NeurIPS 2019 and ICLR 2020. It gives a simple picture of how hyper-parameters are set, how many baselines and datasets are included, or how seeds are used.

Challenges for AutoML: Giving Control to Users

 π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization

> Hyperparameter Optimization via Interacting with Probabilistic Circuits

Large Language Models for Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering

Challenges for AutoML: Large Models

What's next in AutoML?

Example: Pix2Code

Wüst et al. Pix2Code: Learning to Compose Neural Visual Concepts as Programs. UAI 2024. AutoML Meets Materials Science | Jonas Seng | AIML Lab TU Darmstadt | May 08th 2025

Prospects for AutoML in Materials Science

HuggingGPT for Materials Science?

Shen et al. HuggingGPT: Solving Al Tasks with ChatGPT and its Friends in Hugging Face. NeurIPS 2023.

HuggingGPT for Materials Science?

Shen et al. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face. NeurIPS 2023.

Interactive Bayesian Optimization for HPO

Neural Architecture Search (NAS) for Material Discovery

search space of architectures

Neural Architecture Search (NAS) for Material Discovery

Distributed NAS and HPO (FEATHERS)

End-to-End AutoML Systems

Framework	Based on	Language
auto-sklearn	BO, Meta-Learning	Python
H20	Stacking	Python/R
AutoKeras	BO based NAS	Python
AutoGluon	Multi-Layer Stacking, BO	Python

LLMs + End-to-End AutoML Systems

Use what AutoML has to offer!

- there are robust libraries and frameworks for HPO → this can substantially decrease efforts for you and yield better results!
- similarly, NAS helps you in designing neural networks efficiently
- end2end systems like AutoWeka can act as a good baseline for your evaluation → make use of it!
- on tabular data, TabPFN can automate large parts of the ML lifecycle already with quite high accuracy

How can Materials Science help AutoML?

Materials Science gives AutoML access to new tasks

Structured Search Spaces

this should be reflected in search spaces of AutoML systems!

we can learn priors over such structured search spaces based on experimental data

Structured Search Spaces

Materials Science can teach us about AutoML's usability

Getting Insights into AutoML decisions: SOTA

assess importance of hyperparameters on the final model performance

get a symbolic representation of hyperparameter influences on model performance

Getting Insights into AutoML decisions: Next steps

causal explanations: why was a certain algorithm configuration chosen? What if we had decided differently?

symbolic causal explanation → provides not just the structure but also a symbolic representation of dependencies among decisions

Materials Science can teach us about user needs

 assumptions made in human-centered AutoML are often based on intuition and common sense, but are not based on empirical findings

Causal AutoML

Science is all about causation: Materials Science could help the AutoML community to strive for AutoML systems for causal learning, enabling automatic discovery of cause-effect relations in experimental data!

The Automated Statistician

The Automated Statistician Researcher?

Questions?