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Artificial Intelligence 
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Can a Large Language Model replace a scientist?

M.C. Ramos et al., arXiv 2407.01603 (2024).
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Recent publications claim that 
Large Language Models can predict novel materials.

Can a Large Language Model replace a scientist?

M.C. Ramos et al., arXiv 2407.01603 (2024).
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Hands-on: Let’s give it a try! 

Answer form ChatGPT:

Technical Parameter: 
Atomic Simulation Environment (ASE)

Technical Parameter: 
Effective Medium Theory (EMT)

Physical Parameter: 
Aluminium
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Hands-on: Let’s give it a try!

Answer form ChatGPT:

Experiment: 62 GPa 
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State of the Art - ChatGPT 4o Model

MPI for Sustainable Materials | Jan Janssen https://chatgpt.com

With Correction: 40 GPa Experiment: 62 GPa 

Debugging:

The code produced by ChatGPT 4o can be executed. 
The generated code is >90% correct, but the scientific result is wrong. 

Hands-on: Let’s give it a try! 



4

Materials Informatics Group
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Our Expertise: Workflows for Sustainable Materials

Machine-Learned Interatomic 
Potentials for Extreme Environments

Uncertainty Propagation 
for Density Functional Theory

Automated Workflow for Calculating 
Melting Temperatures

J. Janssen, et al.,npj Comput. Mater., 10, 263 (2024)

DFT 
Calculation

Fit ML
Potential

Active
Learning

Submit a 
set of 100-

1000
structures

Hyper 
Parameter 

Study

Collect 
Structures 
from MD

A. Rohskopf, C. Sievers, N. Lubbers, M.a. Cusentino, 
J. Goff, J. Janssen, et al. JOSS, 8 (2023) L.F. Zhu, J. Janssen, et al. Comp. Mat. Sci. 187 (2021) 

pyiron Workflow Framework
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J. Janssen, et al.,npj Comput. Mater., 10, 263 (2024)
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from MD

A. Rohskopf, C. Sievers, N. Lubbers, M.a. Cusentino, 
J. Goff, J. Janssen, et al. JOSS, 8 (2023) L.F. Zhu, J. Janssen, et al. Comp. Mat. Sci. 187 (2021) 

pyiron Workflow Framework
J. Janssen, et al., Comp. Mat. Sci. 161 (2019) - https://pyiron.org 

The pyiron workflow framework enables data-driven materials science, by moving away 
from the terminal-/shell-based interface towards a programmatic Python-based interface.

Our Expertise: Workflows for Sustainable Materials
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pyiron based Large Language Model Interface for Atomistic Simulation

https://jan-janssen.com/LangSim - arXiv 2505.03049 (2025).
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pyiron based Large Language Model Interface for Atomistic Simulation

https://jan-janssen.com/LangSim - arXiv 2505.03049 (2025).

Using specialized agents, the Large Language Model (LLM)
can interface with atomistic simulation codes and utilities.
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How to get the code? 
• Get the source code 
• Install the required dependencies
• Compile the software
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How Can the LLM Install Scientific Software? 

MPI for Sustainable Materials | Jan Janssen

How to get the code? 
• Get the source code 
• Install the required dependencies
• Compile the software

Installation Documentation 
• VASP – 19 pages
• LAMMPS – 50 pages 
• DAMASK – 14 pages

While the source code is available,
the installation of a scientific software can be challenging.



Conda-Forge
For Materials Science 

before in Conda-Forge

Easy installation of scientific software:

Advantages:
• Over 900 materials science package
• Over 300 million downloads in total

• Distribution of precompiled packages
• Linked to defined Python version

• Dependency of packages clarified
• Operating system independence

numpyase

pycalphad
jupyter

nglview
tensorflow

pytorch

matplotlib
pandas

bokeh
dask

scikit-learn
phonopy

conda install –c conda-forge <package-name>
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Conda-forge became the default solution for distributing 
open-source software in the field of materials science.

For Materials Science 
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pyiron – Complex Workflows Made Easy

Generic Interface ExtendabilityUp-Scaling 

14 methods

Typical DFT calculation 
can take several minutes 
to hours.  We need a technical 
abstraction for calculation and 
data management.

Scientific software is 
changing constantly and 
depending on your application 
you need a different set of 
tools.

Reproducibility Extendability

Transferability
By separating the technical complexity and the scientific complexity, pyiron lowers the 
entry barrier to materials science not only for humans but also for machine learning. 
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Simulation Life Cycle

MPI for Sustainable Materials | Jan Janssen J. Janssen, et al., Comp. Mat. Sci. 161 (2019) 

LangSim:
Large 
Language 
Model 
Interface

By covering the whole simulation lifecycle 
pyiron is able to capture the provenance of the workflow. 

Workflow Provenance 
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Simulation Workflows
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The resources (executable, interatomic potentials, queuing system, …)
are configured once and can be used in every simulation protocol.  

pyiron Enables Rapid Prototyping and Up-Scaling

J. Janssen, et al., Comp. Mat. Sci. 161 (2019) 
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pyiron Objects
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Interfaces

J. Janssen, et al., Comp. Mat. Sci. 161 (2019) 
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pyiron Objects

MPI for Sustainable Materials | Jan Janssen

Abstract the technical complexity 
to focus on the implementation of the scientific simulation protocol. 

Interfaces

J. Janssen, et al., Comp. Mat. Sci. 161 (2019) 
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Collecting Results with the pyiron Table Object

J. Janssen, et al., Comp. Mat. Sci. 161 (2019) 

Iterate over interatomic potentials or even simulation codes 
and afterwards collect the results using map-reduce.
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pyiron 
Workflow Framework

Jupyter Lab based interface for data-
driven materials informatics to enable 

rapid prototyping and up-scaling.

Conda-Forge
Installation of Scientific Software

LangSim
Large Language Model Interface

Workflows developed for high 
throughput screening are now 

accessible through language interfaces.

Maintaining over 900 materials 
informatics packages on conda-forge 

with over 300 million downloads so far. 
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pyiron 
Workflow Framework

Jupyter Lab based interface for data-
driven materials informatics to enable 

rapid prototyping and up-scaling.

Conda-Forge
Installation of Scientific Software

LangSim
Large Language Model Interface

Workflows developed for high 
throughput screening are now 

accessible through language interfaces.

Maintaining over 900 materials 
informatics packages on conda-forge 

with over 300 million downloads so far. 

We enables autonomous materials discovery by combing 
scientific software management, the pyiron workflow framework and an LLM interface.



Application of the pyiron Workflow Framework
to ab-initio Thermodynamics
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Pure Magnesium is brittle

10% Compression (CR)

How to design ductile Magnesium alloys?

Z. Huang, et.al. Sci Rep 8, 3570 (2018)
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Pure Magnesium is brittle

10% Compression (CR)

Magnesium alloy is ductile

Dislocation Slip: Pure Magnesium

Dislocation Slip: Magnesium Yttrium Alloy

How to design ductile Magnesium alloys?
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Data-Driven Design Metal Alloys

MPI for Sustainable Materials | Jan Janssen S. Sandlöbes, et al. Sci. Rep. 7, 10458 (2017)

Mg-1Al-0.1Ca is ductile

The Yttrium-Similarity Index enables the prediction of alloying compositions, 
which have pyramidal dislocation slip, based on ab-initio simulation.

How to design ductile Magnesium alloys?
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Hierarchical Nature of Structural Materials
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Hierarchical Nature of Structural Materials
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finite elements
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grain boundaries, orientation

segregations, multiple phases

Top-down

crystal plasticity

structure, dynamics of dislocations

chemical binding / electronic structure 

Bottom-up

Hierarchical, interacting sets of complex many-body problems  

Materials Science is intrinsically hierarchical, 
so Materials Modelling requires a hierarchical simulation approach. 
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Adiabatic Approach 

LDA

GGA-PBE

FCC BCC
F V, T = 𝐸!"! 𝑉
	 +𝐹#$ 𝑉, 𝑇
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																+ 𝐹'&(𝑉, 𝑇)

B. Grabowski, et al. PRB 84, 214107 (2011)
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Adiabatic Approach 

Calcium

CALPHAD

LDA

GGA-PBE

FCC BCC
F V, T = 𝐸!"! 𝑉
	 +𝐹#$ 𝑉, 𝑇
	 +	𝐹%&(𝑉, 𝑇)
																+ 𝐹'&(𝑉, 𝑇)

Ab-initio Thermodynamics enables
a quantitative prediction of material properties. 

B. Grabowski, et al. PRB 84, 214107 (2011)
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E(V) Curve El. Temperature Phonons Therm. Integration

Finite Displacements MD, Fit Potential, 
Integration

Phonopy + ML Potential +
+

𝜎 = 0.05

𝜎 = 0.03

𝜎 = 0.01

DFT calculation with different volumes 
and electronic temperatures 

F V, T = 𝐸!"! 𝑉 	+𝐹#$ 𝑉, 𝑇 	+	𝐹%&(𝑉, 𝑇)	+ 𝐹'&(𝑉, 𝑇)

Efficient high-precision ab-initio thermodynamic 
calculation result in complex simulation protocols.
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Machine-Learned interatomic potentials couple 
the electronic scale with the interatomic scale. 
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Space Group Symmetry based Structures

The diverse training sets prevent the MLIPs from extrapolating. The structures typically 
contain less than 10 atoms, which improves computational efficiency.

Automated Small SYmmetric Structure Training (ASSYST)
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Optimal Cut-off Radius

MPI for Sustainable Materials | Jan Janssen

Calculation:
- 26 2jmax
- 31 radii

Total: 
806 calculation

The optimal cutoff radius for a given number of parameters 
is shifting towards larger cut-off radii with increasing number of parameters.

For Spectral Neighbour Analysis Potential (SNAP)
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Computational Cost calculating Molecular Dynamics

MPI for Sustainable Materials | Jan Janssen

For long-time scale simulation the performance 
in terms of precision at a given computational cost is key. 

For Spectral Neighbour Analysis Potential (SNAP)
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Optimized 
Pareto Front

previous 
potential

The cut-off radius is primarily a numerical hyperparameter,
considerations based on the radial distribution function are less relevant. 

Including Computational Cost 
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Ab-initio Thermodynamic Workflows
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Solid Liquid Detector Void Detector

Challenges:Iterate over NIST potential database

Three steps of a workflow, (1) develop the method, (2) add error handling and uncertainty 
quantification to enables high-throughput screening and (3) add LLM agent interface.

Melting Temperature for Interatomic Force Fields 

L.F. Zhu, J. Janssen, et al. Comp. Mat. Sci. 187 (2021) 
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Ab-initio Thermodynamics 

With Machine Learned Interatomic Potentials (MLIP) 
we predict the full phase diagram from ab-initio.
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Step-by-step Workflow Streaming Workflow

By switching from a step-by-step workflow 
to a streaming workflow, the resource utilization is maximized.
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Testing on Frontier
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Rather than submitting multiple small individual calculations,
a new machine learning potential is fitted in a single job submitted to the HPC.
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Impact of the pyiron workflow framework for ab-initio thermodynamics

Calculating Melting Temperatures 
for Interatomic Potentials

Data-streaming Fitting Workflow

The combination of FitSNAP and pyiron 
was used in the Exascale Computing 
project to automate the fitting workflow.

Potential Cut-off Radius
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potential efficiency.
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Impact of the pyiron workflow framework for ab-initio thermodynamics

Calculating Melting Temperatures 
for Interatomic Potentials

Data-streaming Fitting Workflow

The combination of FitSNAP and pyiron 
was used in the Exascale Computing 
project to automate the fitting workflow.

Potential Cut-off Radius

The cut-off radius is primarily a 
numerical hyperparameter for optimizing 
potential efficiency.

The cut-off radius is primarily a 
numerical hyperparameter for optimizing 
potential efficiency.

Data-driven atomistic simulation enable us to identify trends 
in increasingly large parameter spaces. 



Bridge the Gap Between Theory and Experiment
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J. Neugebauer, A. Ludwig, arXiv 2212.04804 (2025).

exp. resources

specialized
codes

device
interfaces

physical
samples

automation

Combined Active Learning Loop:
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• High-throughput DFT calculation

• Guided experimental discovery
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automation

Combined Active Learning Loop:

• Screen sections of the periodic table 

• High-throughput DFT calculation

• Guided experimental discovery
An increasing number of experimental equipment provides Python interfaces, 

so an experimental measurement is just another Python function call.

Closed Loop High-throughput Screening for Battery Materials

M. Stricker, L. Banko, N. Sarazin, N. Siemer, J. Janssen, L. Zhang, 
J. Neugebauer, A. Ludwig, arXiv 2212.04804 (2025).
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Couple Experiments and Density Functional Theory

Ir Pd Pt

Rh Ru

C
oncentration

M. Stricker, L. Banko, N. Sarazin, N. Siemer, J. Janssen, L. Zhang, 
J. Neugebauer, A. Ludwig, arXiv 2212.04804 (2025).

Chemical Gradient
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Couple Experiments and Density Functional Theory

Ir Pd Pt

Rh Ru

C
oncentration

Chemical Gradient
Experiment

DFT

M. Stricker, L. Banko, N. Sarazin, N. Siemer, J. Janssen, L. Zhang, 
J. Neugebauer, A. Ludwig, arXiv 2212.04804 (2025).
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Couple Experiments and Density Functional Theory
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M. Stricker, L. Banko, N. Sarazin, N. Siemer, J. Janssen, L. Zhang, 
J. Neugebauer, A. Ludwig, arXiv 2212.04804 (2025).
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By initializing the experimental measurement based on the results from the DFT simulation, 
the number of experimental measurements is drastically reduced.

M. Stricker, L. Banko, N. Sarazin, N. Siemer, J. Janssen, L. Zhang, 
J. Neugebauer, A. Ludwig, arXiv 2212.04804 (2025).
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Impact of Machine Learning 

Open-source Development

On the Materials Science Community 

MPI for Sustainable Materials | Jan Janssen

Hackathon in November 2024

Growing number of external pyiron users, increasing number of 
open-source contributors and extension beyond atomistic simulation. 
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Pure functions with well defined inputs 
and outputs accelerate the parallel 

execution of Python workflows. 
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