

TECHNISCHE UNIVERSITÄT DARMSTADT

Parallel Programming

Software Technology for Performance and Scalability

Prof. Dr. Felix Wolf

Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf

Avoiding satellite collisions

The evolution of objects in space

Currently, there are ~28 k tracked objects in space

12 July 2023

TECHNISCHE

UNIVERSITÄT DARMSTADT

Parallel

Programming

High-velocity impact

- 900,000 objects larger than 1 cm
- 130,000,000 objects between1 mm and 1 cm
- Parts travel at high speed (7.5 km/s)
 - Muzzle speed of high-velocity rifle up to 1.2 km/s

Parallel

Programming

Traditional collision detection

Acceleration with geometric decomposition

- Decompose simulation domain into small cells
 - Save cells in a hash map to reduce memory consumption
- Sample satellite positions during the simulation
- Insert satellites into cells based on their position
 - Has a small error
- Check for collisions within the box and neighboring boxes

Christian Hellwig, Fabian Czappa, Martin Michel, Reinhold Bertrand, Felix Wolf: Satellite Collision Detection using Spatial Data Structures. In *Proc. of the 37th IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, Florida, USA*, pages 1–11, May 2023.

TECHNISCHE

UNIVERSITÄT DARMSTADT

Parallel

I Programming

Example with motion

S3

 S_2

 t_3

*S*₁

 S_3

*S*₄

*S*₂

 t_4

Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf

Speed-up

Parallel
Programming

Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf

Optimization of simulation-driven design processes – deep drawing of sheet metal

SIMCON GmbH TH Würzburg-Schweinfurt

SPONSORED BY THE

Federal Ministry of Education and Research 9

Kotfluegel_OFSolv-2.15: 100% (Time: 200.6 Inc: 578) OP40: 100% Schliessen 40_formbacke bis UT: 100%

12 July 2023

Elliptical cup

Parallel Programming

12 July 2023

Department of Computer Science | Laboratory for Parallel Programming | Prof. Dr. Felix Wolf

Deep drawing process

l Programming

OpenForm – Numerical simulation of deep drawing for design optimization

Influence of the blank's initial shape

A = 80mm, B = 70mm

A = 70mm, B = 60mm

A = 69mm, B = 65mm

Simulation input

Parallel Programming

The "**Addendum**" surfaces are interactively created and added to the given Part geometry

→ in general cannot be considered as part of the design parameters.

Blank Outline

Parameter type: polygon (x,y,z) Lower bound: Part outline Upper bound: Bounding Box Blank Thickness

Parameter type: scalar (t) Lower bound: 0.60 [mm] Upper bound: 2.00 [mm]

Simulation output

Trial and errortime and resource consuming

Objectives

- Acceleration of the workflow and its components reduces energy and compute time for simulation
- Increased quality of the solution –reduces resource consumption in later steps of the industrial production
- Methods
 - Artificial intelligence/machine learning
 - Approximate computing
 - Efficient use of accelerators
 - Performance tools

- Deep learning
- Reinforcement learning
- Active learning
- Gaussian process regression

Opportunities & challenges

Adding results from similar geometries to the training set

Optimized workflow

TECHNISCHE

UNIVERSITÄT DARMSTADT

Effect of different numbers of initial samples

Acknowledgment

Programming

Avoiding satellite collisions

- Reinhold Bertrand
- Fabian Czappa
- Christian Hellwig
- Martin Michel

Deep drawing

- Semih Burak
- Kassem Koutaiba
- Ali Mohammadi
- Lukas Moj
- [...]

Federal Ministry of Education and Research

SPONSORED BY THE

European Space Agency

Parallel Programming

Thank you!

Picture credits

- Parallel Programming
- https://www.esa.int/Space_Safety/Space_Debris/ESA_s_Space_Environ ment_Report_2022
- https://www.esa.int/Space_Safety/Space_Debris/About_space_debris
- https://www.esa.int/Space_Safety/Space_Debris/Hypervelocity_impacts and_protecting_spacecraft
- Deep drawing illustrations: Courtesy of GNS mbH