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Multiscale - Multiphysics

With friendly permission from
Pascal Weihing & Thorsten Lutz




The Scale Gap

R (Ui, z1,4) =0

Governing Equations at level |
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Governing Equations at level L
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Governing Equations at level A
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Influence of level | on L

e e
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Influence of level L on A
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0

0.4 0.6 0.8
Strouhal Number St [-]

Free flow domain
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High Fidelity CFD: FLEXI



Multiscale Challenges to CFD

« Wide range of interacting scales: Non-
linearity is the source of complexity and
sensitivity

* For a smooth solution and a consistent
scheme of order N, we have an error
bound

lw — upllpo < CRNH!

* Number of points per wavelength for a
given error: Measure of information
efficiency

[ N=1, 64 DOF ] [ N=15, 64 DOF ] 10




Discontinuous Galerkin Schemes

- Different Roads to High Order: Higher Derivatives, wider
stencils: From local to global

* Discontinuous Galerkin schemes combine useful properties
for multiscale problems
» Basic ideas:
* High order polynomial basis with compact support
* L, projection is optimal
* Hybrid FE and FV scheme

 This gives flexibility, locality, conservation and stability (FV)
and accuracy (FE)

11



Simulation software: FLEXI Twww flexi-project.org
Introduction

 High-order accurate open source solver! with excellent scaling behavior
« Discontinuous Galerkin spectral element method (DG-SEM)
* Written in modern Fortran and optimized for CPU based HPC systems

* Focus on DNS/LES of multiscale- and multi physics problems
governed by the compressible Navier-Stokes equations

 Additional features
» Lagrangian particle tracking (LES/DNS of particle laden flows)

» Conservative sliding mesh interface for stator/rotor flow

* Mesh deformation and mesh moving based on ALE formulation

* hp-adaptivity

* Intrusive and non-intrusive methods for uncertainty quantification
* Management framework for optimal scheduling on HPC systems

* A solver-in-the-loop framework for reinforcement learning




Simulation software: FLEXI
Discontinuous Galerkin Spectral Element Method (DG-SEM)

+ DG-SEM:
* Type of grid cells: Hexahedrons (curved elements, unstructured, hanging nodes)
\ 4 b St £
@S ®
» Set of basis functions: Tensor product, Lagrange polynomials at
Gauld / Gaul-Lobatto points
Un (&, 0) 2j=1 Uy j O] 97 (69
* Numerical integration: Collocation approach (SEM approach)
+ Time approximation: Explicit Runge-Kutta, IMEX
* Numerical flux: Riemann solver, BR1/2
 Stability De-Aliasing, Split form (entropy / energy stable fluxes)

» Shock-capturing: Finite volume sub-cells, h/p adaptivity

15



Simulation software: FLEXI
Shock-capturing

Idea: Combination of DG and FV
* DG in smooth parts of the flow and FV at shocks

Oscillation, jump or ML indicators

Troubled DG cell: (N+1)3 equidistant FV sub-cells
2nd order TVD FV scheme on sub-grid

Same number of degrees of freedom

Concurrent calculation of FV and DG data

Convex combination of FV and DG operator
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Time
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Simulation software: FLEXI

* Under development since 2010

 High order Discontinuous Galerkin SE framework with
proven HPC capabilities

 Full framework: Preprocessor HOPR, FLEXI,
Postprocessor POSTI and Paraview-Plugin, Blender
Pipeline, HPC-UQ-Framework POUNCE, FLEXI-
preCICE, FLEXI-OpenFOAM, FLEXI-TAU

* Reproduceability: Regression/unit testing, “compile from
file”, Development and Management via gitlab / on
github

POST
HOPR Parallel FLEXI Parallel Dala analysis
Mesh curving HDFS 10 DGSEM Solver L A
SFC domain decomposition High-order accurate et
Unstructured/nonconforming | Parallelized with MPI based
A Visualization
Paraview + POSTI interface

Mesh Generation
CGNS, ANSA, ICEM, GMSH

Computers & Mathematics with Applications |~
Sk olume 81, 1 January 2021, Pages 186-219

FLEXTI: A high order discontinuous Galerkin
framework for hyperbolic—parabolic conservation
laws

flroy

Arbitsary arder "
i s

www.hopr-project.org
www.flexi-project.org
https://github.com/flexi-framework/flexi

17



Simulation software: FLEXI
Adaptivity and error control — hp-refinement

* h-refinement

Mortar interfaces with hanging nodes for optimal grids

Local grid-adaptation and grid-adaptation algorithm required

Up to 50% lower cost compared to human-generated grids

Residual estimation procedure

* p-refinement?

* Local p-adaptivity in smooth solution regions

* Dynamic Load Balancing (under development) TR A Y I

Resolution
= > |
NDG=5 NDG=4 NDG=3 NDG=2 Fv

Density
30 40 50 60 6.7

Blind et al., Grid-Adaptation for Wall-Modeled Large Eddy Simulation Using Unstructured High-Order Methods. arXiv preprint 18
2Mossier et al., A p-Adaptive Discontinuous Galerkin Method with hp-Shock Capturing. Journal of Scientific Computing, 2022



Simulation software: FLEXI
hp-adaptive Multiphase Branch

» Sharp-Interface simulation of
3D water droplet — shock

Element weights w;
600

interaction at Ma = 2.4 and ; 100
We = 100 F o
10
- About 140 DOF / droplet ri
diameter ‘
* Hp-adaptive DGSEM / FV Resolution
scheme with DLB 2
‘N_DG=4
- 7200 CPUh on HAWK et
N_DG=2

Mossier et al., An Efficient hp-Adaptive Strategy for a Level-Set Ghost Fluid Method, arxiv, 2023
Jons et al., Riemann solvers for phase transition in a compressible sharp-interface method, JCP, 2023

Mossier et al., A p-Adaptive Discontinuous Galerkin Method with hp-Shock Capturing. Journal of Scientific Computing, 2022 19
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. » small load *meanload  «high load
H PC -C F D . F LEXl A * comm. increases +good caching «|ocal data dominates
* no latency hiding  latency hiding « latency hiding

Q
o
« Parallelization with the MPI paradigm
* Domain decomposition using a space-filling curve 8
o
[8)
« Communication latency hiding by local work ®
* DGSEM operator requires only com. of surface fluxes
« Small communication stencil :
{ optimum
~ =4 >
~10° ~10
- Parallel I/0 loae / eora
« Small memory footprint ’ °E "
s
- Efficient cache usage at about 2000 DOF/core roe' s
al | '
- Excellent scaling up to over 108 cores § o 7 o
| . e
" case 6
 Transition in HPC architecture requires support o | s et
| ¥ g:g!(‘)
of accelerators (e.g. GPUs) |~ =
1 ideal
il 10 100 1000 10000 100000 1x10°

ranks [-]
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Simulation software: FLEXI
Postprocessing & visualization

r )
User S e Visu
ParaView interaction | Visualization | Parallelization| (<[ f1aq
- specifies visu files . X ‘
- specifies visu options - provides ParaView -
(sampling rate/distribution) adapred linear data s
- requests visu variables - fills GUI elements .
4 )
ParaView Reader | GUI-control |Data-structure
plugin functionality| elements conversion :
\& </ :
- requests visu variables - provides linear - |
- provides visu options data and geometry - optionally -
- provides MPI - provides list of OpHOne:
available variables outputs
PO.STI IO /setup | Variable | Super- Spatial | Surface data
VISH extraction | mappings | sampling | averaging | extraction
tool A
/
- provides salver setup - provides low level functions
- provides MPl/partition info - provides available variables
- requests evaluation of for file type |
mapped variables - provides polynomial data
fre DG Equation | Derived
FLEXT | | Mesh | Lifting operator| FOS | system | quantities
. J

m ParaView 5.9.1
File Edit View Sources Filters Extractors Tools Catalyst Macros Help
ol 8 "o T, - a . . B >
PR EEe TGO 0 FA,GF KAP>PMMS
828 5 S - wakctionx Surface
E9EPTHRE O LR S RS B
Pipeline Browszer 28 [MLayout #1 | +
2 builtin - & w ®| 3
I NACAC0L2_Re5000_A0AE_State_0000
=@ volume
. LGSI\(C)
. £ Contourl
.
Propartios | information
Properties 100
%) »

Esc te

Polyriomial degree 5
far Supersampling |

Node Type Visu | sy

B Variables
Velecityy
velocityZ
VorticityMagnitude
VorticityX
VorticityY
vorticityZ
WallFrictionMagnitude

v WallFrictionx
WallFrictionY
WallFrictionZ
WallHeatTransfer

H BCs
BC_InNow
BC_outfiow

v BC_wall
BC_zminus
BC_zplus

Wi

]

1.6e+00
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A UQ-HPC Framework for Icing

| Input data Step 1 | Goal
Wind tunnel ice Set of continuous prediction of airfoil
geometries random variables lift & drag
Principal component Uncertainty propagation:
analysis NISP, MLMC, MFMC
Model | Simulation Meshing

management
(POUNCE) (FLEXI) (LaPlus)




Intrusive and Non-Intrusive UQ

Non-Intrusive / NISP,
MLMC

(a) Mean (b) Standard Deviation

Intrusive / SG

Mach Pressire Mach Pressure
0.0 1.875 .75 0.0 0.5 1.0 0.0 0.15 03 00 0.6 0.12

Fig. 6. Spacecraft: mean and stasdard deviatio; Mach number on spacecraft surface, pressure In slice through flow field. Example 54,

SIAM J. Sci. Comprt., 42(4), B1067-B1091. (25 pages)

Computational Methods in Science and Engineering

$hp$-Multilevel Monte Carlo Methods for Uncertainty Quantification of
Compressible Navier--Stokes Equations

Andrea Back, Jakob Dilrrwiichter, Thomas Kuhn, Fabian Meyer (), Claus-Dieter Munz,  Related Databases
and Christian Rohde
- " an e Web of Science

Journal of Theoretical and Computational Acoustics | Vol. 27, No. 01, 1850044 (2019) 3

Uncertainty Quantification for Direct
Aeroacoustic Simulations of Cavity Flows

Thomas Kuhn, Jakob Durrwachter, Fablan Meyer, Andrea Beck, Christian Rohde and

Claus-Dieter Munz

Contents lists svailable at ScienceDiroct

Computers and Fluids

journal homepage: www.elsevier comilocate/compfluid

A high-order stochastic Galerkin code for the compressible Euler and
Navier-Stokes equations

Jakob Diirrwdchter*, Fabian Meyer”, Thomas Kuhn?, Andrea Beck®, Claus-Dieter Munz?,
Christian Rohde"

* Insticute of Aerodymamics and Gas Dynamics, University of Stuttgart, Paffemwoldring 21, 70569 Seuttgart, Germany
¥ dmstinute of Applied Ansiysis and Numevical Simulecion, Usiversity of Statngart. Ploffenwaidring 57, 70569 Sturgart, Germany




Accelerating Monte Carlo

®
o  BoFo
®
w D
Multilevel MC: Multifidelity MC:
« Cheap models: coarse = Cheap models: arbitrary e
mesh resolutions correlated models = = = e‘@
- Driving factor: Mesh = Driving factor: Model ®
covariance DR B e‘
convergence

Wall-resolved LES of the clean geometry: an HPC problem
Optimal number of samples is solution dependent!
HPC challenge: Extreme simulation cost variations

We need millions of computations




POUNCE (Propagation Of Uncertainties) ﬂ.Jés

PoUnce: A framework for automatized uncertainty
quantification simulations on high-performance
clusters

Jakob Duerrwaechter @ 'Y, Thomas Kuhn', Fabian Meyer’, Andrea Beck'?,

 Fully automated model management framework and Clus Dicter M’

1 Institute of Aecodynamics and Gas Dynamics, University of Stuttgart, Germany 2 Institute of Applied
Analysis and Numerical Simulation. University of Stuttgart. Germany 3 The Laboratary of Fluid

fo r U Q O n H P C SySte m S (O pe n S 0 u rce ) ?‘:‘T:h ol Technical Flows, Otto von Guericke Univarsity Magdeburg, Germany § Correspoading

DOI: 10.21105/jo=s. 04683

* runs multiple iterations with different models: e
Optimal stacking according to length and size _ i I

e Common MPI Communicator & common |O

« each model includes pre- and post-processing

» focus on efficient machine use: different
machines via ssh

* Object-oriented Python, modular Design

* NISP, MLMC, MFMC - Hazel Hen, HAWK, local
cluster 31



Structured Grid Algorithm

Laplacian Smoothing (Average by Neighbours)

Additional Terms for Grid Quality

Minimum spacing

Maximum skewness

Max stretching ratio

32



- Results
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Simulation Setup

s

Baseline Simulation

N

r

N

Uncertainty Quantification

* Laminar flow airfoil
3D wall-resolved LES

Low Reynolds number

* Minimal required resolution

Parameters
Re 500.000
AoA 3°
Ay =~ 4
wall
Nelems 190.000
tend 10 d/uoo

computation time ~ 40.000 CPUh

\,

* NISP
 Two PCA modes, Ny = 4
« 25LES
« 0.5 M CPUh

« MLMC
« 3D Np; =5,3,1
* 16 // 63 // 406 simulations
« 1 M CPUh

- MFMC
« 3D Np; = 5// 2D Np; = 5,3, 1
- 23// 174 // 587 /I 3676 simul.
- 1 M CPUh

34



Iced Airfoil Performance

( N\
Lift coefficient
0.75 pm
- 5 0.8
Turbulent boundary layer
<0 0.7
0.6
—-0.75 =
—0.78
>
0.75 pm
0.04
@ B 0.03
0.02
—0.75 B
—0.75
L Pag

e 35



FLEXICE: towards Multi-X/UQ

Air Phase velocity (drag) Droplet Phase
compressible WEELGY 04 1
Navier-Stokes Eq. Ve, compressible PDE
oc/}}
-g/'ad, .
volume "y 2 collection
; " Neg , efficiency
grid 1‘,70*
Airfoil -
Structured gr|d ice growth Surface:SWIM T e

generation film transport &

icing source terms

surface grid

Closing the Scale Gap (a bit) through UQ -
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Data-informed Shock Capturing for High Order Methods

 Stable numerical approximation through Shock
Capturing: improves stability, decreases -
accuracy: use sparingly!

 Detecting the occurrence of shocks: non-trivial,

empiricism, many parameters

« For HO methods: Just detecting a “troubled cell”

is not good enough: We need localization on the

element subscale

39



Data-informed Shock Capturing for High Order Methods

» Supervised learning of a classifier from analytical
smooth and non-smooth data

+ Convolutional neural networks for spatial correlations
* About 100,000 samples per class, classes balanced
+ Train/validate/test split

» Cross-entropy loss, ADAM optimizer, minibatch GD

» Tensorflow 1.6, coupled to FLEXI

* Resulting F1 score > 0.96

40



Data-informed Shock Capturing for High Order Methods

» Multiscale-CNNs for edge detection

» Consistent subscale localization, contiguous
shock fronts: On different grids, for different

— problems (same model)

« On ”"bad but practical” grids: stable &
accurate

CLOERO SELS SR e S e S © S e g
POO O © 0O O 0O
POC © © © O O ee
CO0 0 O 0 0 e ee
CO0 O 0 0 @ e el
P00 O D @ @ OO
CO0 0 @ @ ® OO0
POOC C @ @ O 0OCg
2328882
Binary edge wap
./
NiRE
PROE =
H
B
T
S5aSN
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:
B
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Localized AV for shock capturing

Use prediction of "shocked nodes” (binary edge map) and smooth with
high order Radial Basis functions (RBF) interpolation

3 &34

O C ee
O o e

® ® 8

C O O Oq

O O 0 0Oq

Ny
Ha(X) = Hascale Z ¢y (|I¥ — Xy, [|2) , P 9
l=l ® C 04
® O OQ
O © OC

0 O OgQ
a 0 Ao

With ¢ being the chosen RBF, «; as interpolation coefficients and the o
spatial position of the inner-element solution nodes labeled “shocks” as X, /

This leads to a global, but weakly coupled Vandermonde matrix.

Solve linear system with PETSc or approximate as local problems
(compact support)

42



Data-inforrnp_d Shock Cantiirina for Hiah Order Methods
I Hay

Zoom A Zoom to shock
T I

Hav

reference

Persson et al.

3 H{ — ANNSL (element) =

—— ANNSL (C°-RBF) \
—ANNSL (02 RBF)

002040608 1 121416182222426 2 2.2 24 2.6 2.8 3
X X

2.5

CE e e e
43




ML: RL + FLEXI




The Scale Gap in Turbulence

R (U, a,t) =0

Governing Equations at level 1

Influence of level | on L
—~—
R(UL,zL,tL) + M@U,UL) =0

Governing Equations at level L

Joarse Grid Data U

——s

DNS

\ 4

The Reynolds stresses:
The footprint of the fine
scale turbulence

{k

[ Data-driven models ]

45



Large Eddy Simulation - Definition

u="1u(z,t) +u(z,t) = u(x,t)

~

* Discretization scheme not relevant

KSeparate Ar and h

- Explicit filtering: o — 0

« Caveat: homogeneity and isotropy,
boundary conditions, realizability,
commutation...

o /

0.5% on google scholar

= Jart

moined Ar and h \
* Implicit filtering: h 7@ 0

» Discretization scheme defines filter
kernel

« <= plus discretization parameters

and errors

99.5% on google scholar, 100% for “industrial” LES

VG (x — r)dr

46



“Same equations, domains, models...”

08

0.6 -

o Experimental, Parnaudeau
——— - Blackburn & Schmidt
Frohlichetal =N
Kravchenko & Moin *
Meyer & Hickel
N=7
N=11

0.5

1 1.5 2 2.5 3 35
x/D

4



Ax
The LES dilemma u(x) — / u(r)G(x — r)dr
—Ax

« Commutation introduces errors: |IFF isotropy, homogeneity, linearity of the filter are given and
grid and filter are completely separated, then the closure term is:

uu —uu
* Otherwise, itis Which should be modelled /
closed?

_u/

D (ai

T

Inhomogenous, non-linear The filter shape is not known a
priori

49



Fourier Filter

Top Hat Filter

!

Local Projection Filter

DNS

What is the coarse scale LES solution?

50

=

What is the associated closure?




LES Closure Terms: Supervised learning

Learning

Coarse Grid Data U

DNS

NN: ming ”Y — M(X',O)“

Closure Terms R(F(U))

 Turbulence is a non-local phenomena:
Pointwise data only not sufficient

* LES closure term prediction from spatial
(CNN) or temporal (GRU/LSTM) data

¢ 99.99% CC, error <0.01%

g

R{F(U)),

|
8

—
(=}

RO,

Exact (—)

l

GRU3 (—)

-5 RFU)),

0
15
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LES Closure Terms: Supervised learning

 Directly close LES equations with ML-learned Reynolds forces

 Implicitly filtered LES: Expected stability problems

* Incorporating physical constraints and ML stabilization for uncertainty estimation helps

24
—— filiered DNS
— Standard
12 - = 6=00L0=02
g —_—0c=00l.0=04
@x v 6 =001, = 1.0
- - 6=002.00=02
6 | | —o6=002.a=04
N e 6 =002, = 1.0
3 : :
1.6 1.4 1.45 1.5 1.55 1.6
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LES Closure Terms: Supervised learning

* Turn the ML prediction into a
useful model:

* include dissipation constraint
from TKE in cost function

* project forces prediction on W21 - g
stable basis \
0.6
« Eddy viscosity approach with _
. . o = =
adaptive viscosity in space and = ¥os ¥
time — e,
DA o e . T
1 _IMMLEIS 1 I\ 105- 1 1 1 1 LAl
14 5 T8 17 18 1.9 ' 5 10 15 20 2530
Time Wavenumber k
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Control Problems

* How to model decisions in dynamical
systems under uncertainty?

54

Credit: Department Safety Critical Systems & Systems Engineering, DLR



Learning for dynamical systems

Experiments
Solver Solver + N é (U) Model + N 112;; (0)
: Analytical Data 1

Stage 2: Online inference on “real” data

Stage 1: Offline training on well-defined data

Model-Data-Inconsistency

55



Learning for dynamical systems

+ Simulations are (discrete) dynamical systems

* RL is a different paradigm from ML: Learning to take
optimal actions in a dynamical system from
experience (on the coarse level)

* Supervised learning has two problems: How do we
define a lot of true data and make models robust?

* Reinforcement Learning is the method behind the
recent successes: Self-Driving Cars, Autonomous
Robots, AlphaGo, Starcraft, ...

Qg

Y

Environment

St41 ™~ P(St,at)

Ter1 = f(St: 8641, at)

ML with Solver-in-the-loop: discretization-awareness

St+4+1

Agent

Tt4+1

mwolailse) [©
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An Example: RL for LES closures

Reinforcement Learning

Turbulence is a prime example of the scale gap

We need models to augment the coarse-grained equations (LES & RANS)

We can formulate this as an RL problem: Find a strategy for choosing the best model

10()

Epwns(k)

10-9

10°
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Formulation

¢ |Implicitly filtered LES with High-Order DG
scheme.

* Homogeneous Isotropic Turbulence
(“Turbulence-in-a-box”), Re, = 180

* Periodic boundaries
» Forcing for statistically stationary flow

* Reward based on error in spectrum of turbulent

kinetic energy

g

Environment

Se1 ~ P(se,ar)

o1 = f(St, Se41, )

St41

Agent

* Spectrum of precomputed DNS as target

* Reward scaled to ry € [—1, 1] with exponential

function

109

Epns(k)

10-?

Tt41

wo(alst) [€
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Formulation

Actions

Smagorinsky’s model:

vt = (C',.;A)2 \/ 2§ij§ij

* Cg: Model coefficient
* A: Filter width

s S: Rate-of-strain tensor

DG Element
N=5H

» Elementwise convolutional architecture

Gx6x6

Qg

Environment

Se1 ~ P(se,ar)

o1 = f(St: Se41,ae)

St41

Agent

space and time: C; = Cs(z,t)

* First step: elementwise constant Cj

Adapt model parameter dynamically in

St

Tt41

4[11(’11 |v5‘1)

"I"t
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Simulation software: FLEXI
Reinforcement learning framework — ReLeXI’

« Distribution on hybrid HPC systems via the SmartSim Library?

Dedicated GPU node (,Head®) for training and model evaluation

FLEXI instances interactively distributed across multiple CPU nodes (,Workers®)

Communication via in-memory database with the Redis library

Easily extendable to other codes Herate

Training Loop

Gradient Asvent

SmartSim IL

0404 a Vud(r'")

Start, assign and Start
manage FLEXI runs
on MPI

FLEXI In memory database

(Redis / KeyDB)

'Kurz et al., Relexi—A scalable open source reinforcement learning framework for high-performance computing.
Software Impacts, 2022
2https://github.com/CrayLabs/SmartSim €0



Relexi Framework

* The framework scales well
over many parallel runs

« We can efficiently evaluate
each policy to get reliable
gradients

« We can run many samples
in parallel

Scaling behavior of the Relexi framework for 24 DOF Scaling behavior of the Relexi framework for 32 DOF

Speedup
\\
X

10 7
P 2 MPI ranks
——— 4 MPI ranks
8 MP1 ranks
16 MPI ranks
loﬂlo" 10 108 10 100 10! 10 10
L L

Figure 3: Scaling behavior of the Relexi framework on up to 16 Hawk compute nodes (2048 MPI ranks) and one Hawk-Al node for the HIT test case with 24 DOF
and 32 DOF for 2, 4, 8 and 16 MP! ranks per FLEXI instance. The black line indicates perfect scaling.
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Results

48 DOF

36 DOF

32 DOF

—— DNS
—— iLES
—— SSM
—— DSM
—RL
0.4

24 DOF

10
10-2

w0t

1072

(a)a

R

107

-1

10
5[
0
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Results

107

M

* RL Agent

* Dyn. Smag.

1 1=

¥ AR
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Results

» Optimal model for different discretizations

109 ¢

——— mean DNS
untrained RL
. 1 trained RL
S/ 16 —C; =0.17
iLES
02

| N=5, Collocation DG | ( N=7, KEP DG ]
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Summary

« Supervised learning of models with guarantees can successfully augment CFD codes
« Examples: Data-driven shock capturing for DG, turbulence closures
 Learning tasks that can be framed as MDPs: Reinforcement learning

* RL can learn from uncertainty, non-linear environments but needs lots of runs to gather
experience: HPC

* We have developed a framework for coupling PDE solvers with RL on HPC systems in
a plug-and-play style

« With this, we can derive optimal, discretization-specific strategies for turbulence closure

« Generally: an optimizable PDE solver

67
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