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Digital twin technology

Synthesis of physics-based modeling & machine learning with real-world observational data

“A Digital Twin is a set of virtual information constructs that
mimics the structure, context, and behavior of an

individual/unique physical asset, is dynamically updated \
with data from its physical twin throughout its lifecycle, and '_____J_\‘

informs decisions that realize value”
— AIAA Institute Position Paper, 2020 :

China: Top 10 frontier scientific questions

Singapore: Virtual Singapore

U.S.: DOE - Al and Decision Support for Complex Systems
Europe: Many initiatives in Horizon 2020 & EU

dynamically synchronised Digital twin

Physical twin

Replica

Foundation — multi-query & real-time simulations
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Reduced-order models (ROMs) for digital twinning

dynamically synchronised

Physical twin
Object

Digital twin
Replica

Reduce — Represent — Recover

s

q(to; 1) - q(t; )
@ at:p) =hla(t:p)ipn)
B(:5 1) = [0q9a()])" D(Gal-); 1)

Nonlinear, time-dependent PDEs
in multi-query, real-time contexts

Full-order solvers lead to probibitive demands!

Projection-based intrusive ROMs

Access to full-order solvers
+

Problem-dependent projection formulation

U

Limited industrial relevance
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Reduced-order models (ROMs) for digital twinning

dynamically synchronised

Digital twin

Physical twin
j Replica

Reduce — Represent — Recover

|~
qalto; p qlt; p)
it @ altip) =hy(a(t; p);p) l

Nonlinear, time-dependent PDEs
in multi-query, real-time contexts

Full-order solvers lead to probibitive demands!

Data-driven non-intrusive ROMs

Physically-consistent,
gray-box dynamics learning
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Reduced-order models (ROMs) for digital twinning

“As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,
they do not refer to reality.”

Albert Einstein

g8 u(t:n) = hu(t; p);p)

u(to; i) u(t; p) Data-driven non-intrusive ROMs
|M‘ ~ Ut )
Physically-consistent gray-box dynamics learning
Reduce — Represent — Recover Big noisy data + Intrinsic modeling uncertainties
U
|//'" Probabilistic Machine Learning
a(to; 1) alt; )

@ alt;p) =hy(altp);n)
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Reduced order ing through

Gaussian process surrogate modeling

_ ’ 2
Prof. Jan Hesthaven Dr. Zhenying Zhang Mariella Kast

MG, J. S. Hesthaven. Comput. Methods Appl. Mech. Eng., 341: 807-826, 2018.

MG, J. S. Hesthaven. Comput. Methods Appl. Mech. Eng., 345: 75-99, 2019.

Z.Zhang, MG, J. S. Hesthaven. Comput. Methods Appl. Mech. Eng., 353: 491-515, 2019.

M. Kast, MG, J. S. Hesthaven. Comput. Methods Appl. Mech. Eng., 364: Article 112947, 2020.
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Reduced order ing through ian p Gaussian process surrogate modeling

Reduced-order surrogate modeling

Non-intrusively find underlying structure from snapshot data — Machine Learning
Reduced-order solutions formulated as low-rank approximation:
r r N
U ) =Y gty or uu(Gw = Y g6 v e RV with r < Ny,
=1 =1

OFFLINE STAGE:

> Reduced basis vectors {1, , ¢} or V=[vy |---| v, ]
« Proper orthogonal decomposition acting on full-order snapshots [unsupervised learning]

> Expansion coefficients (z, u) — ¢;= (1, ) q or v?uh

» Gaussian process surrogate models from projected snapshots [supervised learning]

ONLINE STAGE:
> Regression output evaluation + linear combination = Simulation free

Offline improvements: multi-fidelity data fusion
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Reduced order ing through G ian p Gaussian process surrogate modeling

Gaussian process for regression

Prior Gaussian process (GP) with noise 15 T - - :
aw ~920,x (), y=qw+e, e~.AN(0,03).
Posterior GP conditioned on training data
q* Wl pXy ~ G2 m* (), c* (u,u"),
m* () =k (XK, ly, Ky=xXX) +05ly,

(1) = x (1) = x (XK, (X, ).

At [ 25 confidence level |
Hyperparameters 6 determined by maximizing the marginal likelihood —— predictive mean

+ training data

1 1 M . .
logp(yX,0) = —Sy'K; ! @)y — 5 log[Ky(®)| - - log(2m). 0 2 4 6 8 10

The posterior mean of GPR is equivalent to a kernel ridge regression.
> Interpolation: f(u) = x (¢, X)@; RKHS norm regularization: | f ||?7€ = aTK(X,X)a
> Loss function: /() = lly - fX)I5 +031f1%,; argmingpu /() =K,y

> The existence of noise term U% acts as a regularization.
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Reduced order modeling through Gaussian processes  Hybrid modeling

Hybrid modeling for large-scale systems
Based on a predefined linear-nonlinear domain decomposition

(1) Sensitivity analysis and GPR
UF*(u) = UF° (i) ~ GP

(2) Solve a linear reduced basis problem

Ulm( ) [Alm( )] I[Flm(:u) 1m F( )[Ull:‘b(u)}

Alin Alin,I‘ 0 — Ulin Flin
Arijin Ar+Gr  Grplin Ur +=|| Fr
0 Gnlin,f‘ Gnlin i Unlin IFnlin
(3) GPR surrogate
Uhin (1) = Ut (UF°, ptmtin) ~ GP

. 2
vi=E [ Iw(u+6ui)ll2 ]

> Sensitivity analysis (Modified DGSM) of solution field w(w), V; = S

l 1
> Component-wise reduced order model [Huynh et al, 2013]: static condensatlon + reduced basis
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Reduced order ing through G

Applications in computational mechanics

Time /s Time /s

i One run F-O 2.28E+01 One run F-O 114E+03

2 GPRs 4.88E+00 GPRs 4.30E-01

oo One run R-0 2.23E-02 One run R-O 8.83E-05
X/mm

120 Reduced order model with RB size = 6

z Z 1000
3 3 ™
g g
H £ w0 .
g o 2 0
g 8
g g o
g 200 £
2 3 20
=

Verial daplacement A at heloadig nde / Vel dplacement A at heloadig nde / p=2 —

(s P=(07509) Cp P=012509)
3 2 -
g g
2 2
w00 p=129

Reduce order model predictions with RB size = 10
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Reduced order ing through G
Applications in computational physics

[< 02 =
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Reduced order modeling through G

Application to risk assessment

Estimation of a probability of 1E-05:
The max stress in the two nonlinear

components exceeding 110.4 and 204.8 MPa

Subset simulation
- CW-MH
Component-Wise Metropolis-Hastings

-Cs
Cond

itional Sampling

- aCS
Adaptive Conditional Sampling

Importance sampling
- iCEIS

Improved Cross-Entropy Importance Sampling

- CEIS

Cross
- SIS

-Entropy Importance Sampling

Sequential Importance Sampling

v"v

: AKSELDS

m.guo@utwente.nl (UT-EEMCS-MIA)
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B T e

a2 57
27 = i
%7 e 7 Z o
77 - v
%7 Z z Z
7 i 7 o
7 g/ T 7
N 7
W z Y
CW-MH CS aCS S

w/ Z.Zhang and J. S. Hesthaven
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L. Cicci, S. Fresca, MG, A. Manzoni, P. Zunico. arXiv:2302.08216, 2023

.
-

T 035

v

Active contraction of
truncated ellipsoid

— Benchmark in
Cardiac Mechanics

¢ Sensitivity analysis
¢ Parameter estimation
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Reduced order ing through G

Original Article

Proc MechE Port G

N . - | Aeruspace Enginecring
Non-intrusive reduced-order modeling 007 Yo 23416) 692
for fluid problems: A brief review At e oo

DOL: 10.1177/09544100198%0721
journals sagepub comhomelpig

1 | 2 SSAGE
Jian Yu' ©, Chao Yan' and Mengwu Guo®©
Abstract
Despite rremendous progress seen in the P fluid dy y for the past few decades, numerical

tools are still too slow for the simulation of practical flow problems, consuming thousands or even millions of compu-
tational core-hours. To enable feasible multi-disciplinary analysis and design, the numerical techniques need to be
accelerated by orders of magni Reduced-order modeling has been considered one promising approach for such
purposes. Recently, non-intrusive reduced-order modeling has drawn great interest in the scientific computing commu-
nity due to its flexibility and efficiency and undergoes rapid development at present with different approaches emerging
from various perspectives. In this paper, a brief review of reduced-order ing in the context of fluid
problems is performed invelving three key aspects: i.e. dimension reduction of the solution space, surrogate models, and
sampling strategies. Furthermore, non-intrusive reduced-order modelings regarding to some interesting topics such as

y flows, shock-dominating flows are also discussed. Finally, discussions on future development of non-intrusive
reduced-order modeling for fluid problems are presented.

Keywords

Reduced order leling, i ive, machine learning, surrogate model
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Deterministic

Probabilistic

m.guo@utwente.nl (UT-EEMCS-MIA)

Dimensionality reduction

Reduced-state dynamics

(Manifold learning) representation

L] ]

L L

® ks o ‘o "

p :

pe ] L ] L ] °

® - “ L]

& L]
Encoding-decoding: Projection-inspired dense structure Oplnf
Linear PCA — POD Sparse structure SINDy

Multilayer/Convolutional autoencoder
Bregman autoencoder

Time integration inside loss neural ODE
Auto-regressive “time-stepper”, R-K. NN

Variational autoencoder
Gaussian process latent variable model
Manifold Gaussian process

r(u, ') = k(Menc(u), Menc(u'))

Bayesian inference

Bayesian inference + spatse regression
Bayesian neural networks

Deep kernel learning
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Reduced order modeling through Bayesian operator Inference

Bayesian operator inference

i- INSTITUTE

ENGINEERING &
SCIENCES

Prof. Karen Willcox Shane McQuarrie

> MG, S. A. McQuarrie, K. E. Willcox. Comput. Methods Appl. Mech. Eng.: Article 115336, 2022.
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Reduced order modeling through Bayesian operator Inference ~ Operator inference

Data-driven reduced-order operator inference

Full-order system: a quadratic one as example

d
5q(t) =Aq(1) +Hlq(r) ® q()] +Bu(s) +¢, qlf) =qo, L€ [fy, if]
Projection-based reduced-order system: q = Vq, POD basis dim(Col(V)) = r < Nj,
d A A o A . N
aq(t) =Aq(+H@O a0 +Bu +¢, ) =V'qy, telty, Il

Deterministic inference of reduced-order operators
Minimize the (regularized) reduced-order residual sum of squares with the projected state data

k-1 . A
AmiDA{Z |Aq +H1g; 24 + Buj+&- 4, + 2 (1A AL B é])}
ARBE |50
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Reduced order modeling through Bayesian operator Inference ~ Operator inference
Data-driven reduced-order operator inference

Full-order system: a quadratic one as example

d
d—tq(t) =Aq(?) +HIq(r) ® q(0] + Bu(f) +¢, qlf) =qo, L€ [l ]

Projection-based reduced-order system: q = V§, POD basis dim(Col(V)) = r < N},

d R R R
7,400 =Aq0 +HIg e Q] +Bu +¢&, 4l = Vigy, telty, ]

Deterministic inference of reduced-order operators
Minimize the (regularized) reduced-order residual sum of squares with the projected state data

k=1
min {Z |Aq;+Alq;®q;) + Buj+&— ;|5 + 2 (A A B &))
HBE | j=
Lo model misspecification

r
= ngn{||DOT—RT||2F+9’(O)} = ) min {ID&; ~ril} + 2i(6)}
=1

data noise / / approximation error regularization
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Reduced order modeling through Bayesian operator Inference ~ Bayesian operator inference

Bayesian inference of reduced-order operators

We would like to change the following inference into a BAYESIAN fashion for UQ

{IlD6; —r;l3 + 2;(6,)} — min Point estimate — Posterior distribution

Bayesian regression - likelihood and prior
> Likelihood

r;=Do;+¢€;, pl€;) = N (€104, K)

« Residual €; defined by a zero-mean Gaussian process
« Independent noise K= U?Iki px; D,o; U?) = AN (r;] DO;, U?Ik)

> QOperator prior
pil 0%, A) = N (81l B, 0% diag(A) ™)

« w/ pre-defined mean vector, and hyper-parametrized variance
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Reduced order modeling through Bayesian operator Inference ~ Bayesian operator inference

Bayesian inference of reduced-order operators

Bayesian regression — posterior
poil D,r;,0%,A) = N 0l p;, Zi) o plril D,6;,07) p(d] 6%, A;), in which
2;=3D,0%,A) = 02 [diag(A) + D'D]
. -1
K= p;(r;,D,A) = B+ [diag(A) +D'D] D (r;~ DB,

> Posterior mean: equivalent to Tikhonov-regularized deterministic OpInf (= ridge regression)
» Resolve issues with ill-conditioned Gram matrices

« Help stabilize the reduced-order time integration
> Posterior variance: quantifying the modeling uncertainty introduced by Tikhonov regularization
> Regularization selection: aided by maximum marginal likelihood

1 1 . 2
ffi(U?,/li) == F llx; —Duillﬁ - F Hdlag(Ai)”Z 5#,‘”2
i i

1
1 1 k k
-5 log |diag(A;) + D'D| + zlog(ﬂti)Tld(,,m) - Elog(a?) - Elog(Zn)
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Reduced order modeling through Bayesian operator Inference ~ Bayesian operator inference

Bayesian inference of reduced-order operators

Bayesian regression — posterior
p@®il D,r;,0%,A) = N (0] p;, Z)) < px;| D,6;,0%) p(d;] 0%, A;), in which
3;=32D,0%,A) = 02 [diag(A) + D"D]
. -1
p;= ;DA = B+ [diag(A) +D'D] D' (r;~ DB,

Bayesian Sample Reduced- Aggregate
inference posterior order solve solutions

Projected w
I X L - \ k

snapshot data D Posterior .
operator - :

distribution ROM(Oy) —
p(O|D,R) :

Time derivative | _—|

estimates R ROM(Oy) /

r
A probabilistic reduced-order model: p(g(f)| D,R) = f p@(|oy,...,6,) [ [ p@: D,ry do;
i=1
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Reduced order modeling through Bayesian operator Inference ~ Applications

Noised Euler equations

Training Prediction
1.90 100
9 —_20 170
ot [p] - " oz [pu} %101
9 _ 9 2 ks
orlowl = =g [pw? 0] 7,
9 —_90 = 110 2107
ot [pe] - Oz [(pe + p)u} 100000 2 B "
] 0.90 £ 2 oottt ee e
90000 00E 2 1% noise
: =
25 0.50 2 1014 noiscless
0.30
2 0.10 104
Ou _ _, 0u _ 10p 0.00 0.01 0.02 0.03 0 10 20 30
ot u(’)z p Oz Time [5] Singular value index
Bp op z=0.33 = 1.66
ot — _’Yp 81 — U - - - -
110
6 17 10u :
E[;]——uax[ }“v‘p% 100
%0
g
; 100000
- 80000
d A Ze %
—a(t) =Hlat)@q@®)] 5 L
dt A== 20
0.000 0.008 0.016 0.024 0.000 0.008 0.016 0.024 0.000 0.008 0.016 0.024
Time [s] Time [s] Time [s]
—— Truth *  Observations E551 BayesOplnf solution sampling mean =+ 3 stdevs
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Reduced order modeling through Bayesian operator Inference ~ Applications

2D single-injector combustion process

Location 1 Location 2

002} At
Futel <
Oxidizer sl 1
om0
R O T 001 00 008 o o M — . = o
McQuarrie, et al. J. R. Soc. N. Z, (2021) (a) t = tis000 = 0.0165s. (b) t = t20000 = 0.0170s. (c) t = tz5000 = 0.0175s.
Training Prediction Training Prediction
225 100
AnAAARNAAAAIAANAARAAARA ARA
< . wigdd = AVAVERAMWAMWWAY e2 LG
& WPANANNNINANAANNAARIVAAS 5 ARRARR AR AR AR R R AR A v (R-R)=§
~100 ot
100 v
100 - 7
, e ~ 4 A Ge = (p, pva, pvy, pe, pY1, pYa, pYs, pYy)
— 5 Y AT %
fé o N\ / N\ e’ "\/-.\""'\.,
~100 2. ..
¢ K inviscid flux
by .
= 0 . = * K, viscous flux
& e S "
< Ny N ~
o * S source term
~100 . . . ~100 , . .
0.015 0.016 0.017 0.018 0.019 0.020 0.015 0.016 0.017 0.018 0.019 0.020
Time [s] Time [s]

==+ BayesOpInf ROM mean BayesOplnf solution sampling mean + 3 stdevs

m.guo@utwente.nl (UT-EEMCS-MIA) Learning Probabilistic Reduced-Order Models Mengwu Guo  February 2023 22/28



Reduced order modeling through Bayesian operator Inference ~ Applications

2D single-injector combustion process

Location 1 Location 2

=
~
=)
'3 Location 3 Location 4
S 200
z
&
0 o4
0.015 0.016 0.017 0.018 0.019 002 0015 0.016 0.017 0.018 0.019 0.020
Time [s] Time [s]

— GEMS E=58 BayesOplnf solution sampling mean + 3 stdevs
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Reduced order modeling through deep kernel learning

Deep kernel learning of reduced dynamics

UNIVERSITY
OF TWENTE.

Prof. Christoph Brune Dr. Nicolo Botteghi

> N. Botteghi, MG, C. Brune. Scientific Reports, 12: 21530, 2022.
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Reduced order modeling through deep kernel learning  Deep kernel learning of reduced dynamics

Deep kernel learning

Learn reduced-order latent dynamics
from high-dimensional measurements — images
corrupted by noise

Deep Kernel Learning

kpkL(z, z'; W, 0)
e . = kNN (z; W), NN (2", W); 0)

A Q DKL is a special manifold Gaussian process

| Reduced- Q NN trained as GP hyperparameters
3 orderforward | mp- -
> dynamica Prediction Q Simpler and cheaper than Bayesian NN
mode

Q Used for modeling, denoising, and UQ

Predictive data-driven ROM +UQ DKL: Wilson et al. PMLR, 2016. Manifold GP: Calandra et al. IJICNN, IEEE, 2016.

m.guo@utwente.nl (UT-EEMCS-MIA) Learning Probabilistic Reduced-Order Models Mengwu Guo  February 2023 24128



Reduced order modeling through deep kernel learning ~ Deep kernel learning of reduced dynamics

Deep Kernel Learning of dynamical systems from
high-dimensional noisy data NN GP

Underlying governing equation of a
dynamical system

3(t) = F(s(®), u(®)) Deep Kernel Learning

@@
ﬂﬂ Denoising of the Interpretability of the
measurements latent state variables

High-dimensional noisy measurements Denoised reconstructions of the measurements
R 3 Deep Kernel Learnin,
e A eep :ncgd;a 8 Decoder - = X } /
Xi 4 3 || | PR E780Y %3 g E7Y %
time time
Reduced-order stochastic
dynamical model
Deep Kernel Learning
dynamical model
Background framework for RL & control: N. Botteghi. Robotics Deep Reinforcement u
Learning with Loose Prior Knowledge. PhD thesis, University of Twente, 2021. P(Zes1|Ze )
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Reduced order modeling through deep kernel learning ~ Deep kernel learning of reduced dynamics

Learning reduced dynamical models

. 1
$(0) =~ (mgsing(0) + u(®))

Underlying governing equation of a
dynamical system

p(zelxc)

Denoised reconstructions
of the measurements

High-dimensional noisy
measurements

nel Learning encoder Decoder

(@ X; =Xt +ex, €x "’N(Oa 0'925)
b) W=u+ey, €q~N(002) ,

Deep Kernel Learning P(Zear|zeuy)
dynamical model
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Reduced order modeling through deep kernel learning ~ Deep kernel learning of reduced dynamics

Learning reduced dynamical models

. 1
O() = — 7 (mgsing(t) +u(®))

Underlying governing equation of a
dynamical system

High-dimensional noisy Denoised reconstructions

Decoder

measurements Deep Kernel Learning encoder of the measurements
Corrupted measurements and Corrupted measurements and Corrupted measurements and
dynamics dynamics dynamics
(07 =01, 63, = 50.0) (a2 = 0.6,0¢ = 0.5, (02 = 0.1, 0y, = 200.0)
02y = 100.0)
T E
wt - ‘;‘_I 2 Deep Kernel Learning  p(z,,, |z, u,)
b 3 0 dynamical model
o5 4 4 i
L &
[}

) $(0) =~ (mgsing(t) +u(t) + eiyn)

€dyn ™~ N(Ov U?lyn)

i (@ X3 =X +ex, € NN(Oaag)
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Reduced order modeling through deep kernel learning ~ Deep kernel learning of reduced dynamics

4TU.AMI Strategic Research Initiative Bridging Numerical Analysis and Machine Learning

&
UNIVERSITY TUDelft TU/e 525
OF TWENTE. b

dr. Matthias Schlottbom dr. Silke Glas dr. Deepesh Toshniwal prof.dr. Wil Schilders

Two events in the Fall at CWI Amsterdam
> Workshop (Dec.) Scientific Machine Learning: Bridging Computational Physics and Machine Learning
> Autumn school (Oct.) Scientific Machine Learning for Dynamical Systems
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Reduced order modeling through deep kernel learning  Deep kernel learning of reduced dynamics

Data-driven model reduction with probabilistic ML
> Black-box: Gaussian process surrogate modeling
> Glass-box: Bayesian reduced operator inference
> Gray-box: Deep Kernel Learning

Thank you!

Dr. Mengwu Guo

m.guo@utwente.nl

http://mengwuguo.weebly.com/
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