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Data-driven closure modeling
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Ø algebraic: e.g., Smagorinsky model
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Large Eddy Simulation and closure modeling in turbulent combustion
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Data-driven closure modeling
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Large Eddy Simulation and closure modeling in turbulent combustion
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Ø data-driven: through super-resolution
!!"# = )*! *" − +*! +*" (unresolved stress tensor)

!"$ = 9*" : − +*" ;: (unresolved scalar flux)

evaluated at DNS resolution
(original idea proposed by Fukami et al. and Bode et al.)

DNS-like

LES-like

given
upsampling

factor
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Super-resolution approach for closure modeling
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Could we use the super-resolution approach for subfilter-scale modeling?

SR

Filtering

SR ?

Filtering

Established Ongoing!
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Outline

5

I. Neural network architecture and training strategy

- Supervised vs semi-supervised approach 

II. A-priori in-sample analysis

III. Generalization capability

- at different Reynolds number

- on a different jet flame

- at different combustion regimes 

- of the input variables

IV. Conclusion and future outlook
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What architecture should we use? 
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Recent types of ML architectures for super-resolution subfilter-scale modeling 

CNN

• simplest ML approach
• ability to work with 

incomplete knowledge
• missing spatial information

• mostly used for image recogn.
• fully connected layers
• Several frameworks 

already available

ANN
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Supervised learning
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TSResNet architecture

F-DNS

DNS

This approach presents 
some challenges!

Generator

Fully supervised learning

TSResNet
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What architecture should we use? 
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Recent types of ML architectures for super-resolution subfilter-scale modeling 

CNN GAN

G D Generiert?

Ø large amount of data required
Ø lack generalization capabilities
Ø cannot guarantee high-wavenumber 

details

Ø estimates PDF of observed data
Ø semi-supervised learning
Ø increases information content
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Super-Resolution Generative Adversarial Network 
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PIESRGAN architecture

F-DNS

PIESRGAN

Real or
Fake?

D loss

G loss

DNS
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feedback from 
the discriminator

Generator

Discriminator

supervised
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Preprocessing & training strategy
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Preprocessing

Ø filtering the DNS dataset (e.g. box or 
gaussian kernel) to obtain the input data

Ø extracting sub-boxes to be used during the 
training

Ø normalizing input variables: (u, v, w) ∈ [0,1]

Training strategy
1st training phase

Supervised: only pixel loss

Generator

2nd training phase

Discriminator

Generator

Training on a Forced HIT DNS dataset with @A< = 88

80-90%
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PDFs of velocity gradients and energy spectra

TSResNet model captures only larger features/large scales well, while PIESRGAN almost 
exactly predicts the DNS results and reproduced accurately the kinetic energy spectra 
over wider spatial wavenumbers

Supervised vs Semi-supervised training

⁄"# "$
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Outline

12

I. Neural network architecture and training strategy

- Supervised vs semi-supervised approach 

II. A-priori in-sample analysis

III. Generalization capability

- at different Reynolds number

- on a different jet flame

- at different combustion regimes 

- of the input variables

IV. Conclusion and future outlook
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PIESGAN network structure
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Discriminator

Generator

Based on the original ESRGAN 
model with:
• fully 3D Convolutional Layers
• deep Residual Dense Blocks
• physical-inspired Loss Function
• different upsampling layers
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A-priori in-sample analysis: non-reactive configuration
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Visual similarities (velocity magnitude)

Ø the GAN model reconstructs fairly well small-scale structures, not included in the input
Ø at this level, there are no visible differences
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A-priori in-sample analysis: non-reactive configuration
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Comparison of a-priori SFS stress tensor component !%% (jPDF)

A-priori Dynamic Smagorinsky SR (SFS) DNS (SFS)
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A-priori in-sample analysis: non-reactive configuration
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Comparison of a-priori SFS stress tensor component !%% (jPDF)
Dynamic Smagorinsky model SR model

Ø remarkable correlation of the SR model with the DNS 
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Outline
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I. Neural network architecture and training strategy

- Supervised vs semi-supervised approach 

II. A-priori in-sample analysis

III. Generalization capability

- at different Reynolds number

- on a different jet flame

- at different combustion regimes 

- of the input variables

IV. Conclusion and future outlook
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Generalization capabilities of data-driven models
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Existing challenges of data-driven models 

A-priori: established

trained
PIESRGAN

ML library

A-posteriori: not fully stable!

t

t+1LES solver

PIESRGAN

Filtering

Interpretably
(black box

nature)

Quantify the
uncertainties 
of ML models

Evaluation of
out-of-sample

predictions

Open research issues
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Generalization at different Reynolds numbers
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Premixed methane/air jet flames DNS dataset

Phys. 
Param.

R1K1 R2K1 R3K1 R4K1

Re [-] 2800 5600 11200 22400

( [*+] 18 23 25 25

-6 [*+] 110 110 110 110

dx [*+] 20 20 20 20

Ka [-] 39 23 21 21

increasing Re

roughly
constant

Is the SR model learning any of those physical quantities?
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Generalization at different Reynolds numbers
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Premixed methane/air jet flames DNS dataset
jPDF SFS stress &&%

In-sample prediction
Same training and 
testing conditions 

Reference model

Out-of-sample prediction
Extrapolation at

lower Re

Good prediction

G
AN

DNS

G
AN

G
AN

Out-of-sample prediction
Extrapolation at

higher Re Good prediction

Only R2 training

Good extrapolation at both lower and higher Re numbers
Is there any ratio that must be preserved between training and testing 
conditions to ensure generalizability?
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Generalization on a different jet flame

21

Generalization on a hydrogen/air jet flame

Ø Larger ⁄7 8 compared to R2K1 

Phys. 
Param.

R2K1[1] H2K2 [2]

Re [-] 5600 5000

( [*+] 23 10.2

-6 [*+] 110 435

Ka [-] 23 43.5

dx [/0] 20 17

training testing
R2K1

training

H2K2

testing

Ø Similar Re

Ø Similar Ka

Ø Smaller 17 9' compared to R2K1 

2 different approaches

filter size consistent with the training:
⁄7 8 and 17 9' are not equal to the training

filter size is adjusted to match ⁄7 8
of the training 
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Generalization on a different jet flame
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Fs consistent with the training

Ø strong overprediction of the velocity in the jet region which results in thicker and 
without small-scales turbulent oscillations

Ø the error is less marked in the coflow

F-DNS Super Resolution (SR) DNS
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Generalization on a different jet flame
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Fs rescales to match ⁄. / - adjusting the input field

Ø SR field looks visibly sharper, where some features at the jet regions are enhanced

F-DNS Super Resolution (SR) DNS

The ratio between the Kolmogorov scale and grid size must be 
preserved between training and testing to ensure generalization 
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Generalization at different combustion regimes
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Heat release 
barely

affects vorticity

#$ < #$01 (Low Ka) #$ > #$01 (High Ka)

Strong influence of heat release on turbulence below the critical Karlovitz number

Heat release 
strongly

affects vorticity

Phys. 
Param.

H2K1 H2K2

Re [-] 5000 5000

U [m/s] 23 93

Ka [-] 2.6 32

2:/4; [-] 1.25 7.0

5 [/0] 40 10

6; [/0] 435 435
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Generalization at different combustion regimes
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23 < 23() (Low Ka)

23 > 23() (High Ka)

Barycentric maps of the Reynolds 
stress invariants

Generator

Mixed → Low Ka

A shuffle training approach must be employed 
to achieve a certain level of generalizability  

Premixed hydrogen/air flames DNS dataset

Mixed → High Ka

GAN DNS
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Generalization towards different physical quantities not included at the input
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Ø coflow and central jet 
regions captured poorly

Ø at the jet/coflow boundary, 
the error is mitigated

F-DNS

Super Resolution

DNS

DNS

SR

OH mass fraction

GAN
model

(7(, :̅, *;,*<) (u, :, ;,T)

training

Pretrained
PIESGAN
Model

(7(, :̅, *;,=>) (u, :, ;,OH)
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I. Neural network architecture and training strategy

- Supervised vs semi-supervised approach 

II. A-priori in-sample analysis

III. Generalization capability

- at different Reynolds number

- on a different jet flame

- at different combustion regimes 

- of the input variables

IV. Conclusion and future outlook
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Conclusion and future works
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Ø PIESRGAN network performance is assessed against a supervised CNN-based network in the 
context of turbulence closure modeling

Ø a-priori in-sample analysis demonstrates the ability of the GAN model to recover the DNS 
data 
Ø a-priori subfilter-scale GAN model outperforms the dynamic Smagorinsky model

Ø a-priori performance of far-from-training conditions has been investigated
Ø the ratio ⁄= > needs to be matched to ensure generalizability, showing good extrapolation at both 

lower and higher Re
ØShuffle training approach efficient to predict different combustion regimes

Future works
Ø perform additional investigations at different flow conditions

Ø further extrapolation and generalization capability
Ø a-posteriori embedding in a LES solver
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