
www.cerfacs.fr

Leveraging AI for better high-fidelity CFD
without compromising accuracy and reliability

Corentin Lapeyre
Research Scientist, CERFACS

NHR4CES Community Workshop • 2023.03.01
Machine learning in Computational Fluid Dynamics

2

Paris.

Toulouse.

Propulsion
Aerodynamics

and Aerocoustics
Climate - air transport

interactions

Hydrogen
combustion

Environment and
Safety

Climate Variability
and Predictability

150 researchers

20 training sessions / y

Machine Learning
3

AI ?

4

Simulation Tools

5

6

System Models

7

Steady-state
simulation

8

Unsteady
simulation

(High fidelity)

9

Direct numerical
simulation

10

Many ML
applications

Too
expensive

Emerging
field

Active
research

field

11

Hybrid High-
Fidelity

Simulation

More accurate models

Innovative numerics

12

2

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..

empirical results [4–9].
The data-driven discovery may be classified into two major approaches. One is the pure data-

driven methods [10,11] which model governing equations using neural networks that are trained
to fit observed data without physics. This approach could provide a neural network model that
mimics training trajectories, particularly when no physics but a large amount of data are available.
However, it is likely that the learned models do not generalize well on the region where training
data are scarce or even do not exist. The other is the physics-informed data-driven approach,
which aims to model governing equations by embedding principles of physics into neural networks

together with data. By exploiting physics, it was empirically observed that the amount of data
needed to get good performance is much less than those of the pure data-driven methods, and
the learned model is stable and generalizes well. Typically, the physics are imposed on neural
networks by means of either soft or hard constraints. The use of soft constraints introduces
regularization terms in an associated loss function that penalize and generalize neural networks
that do not obey the physics [12–15]. The hope is that neural networks approximately follow
the physics after training. The hard constraints are typically imposed by designing proper neural
network architectures that obey the underlying principles without optimization processes [16,17],
yet maintain sufficient expressivity so that governing equations can be learned from data. This is
the approach we follow in the current paper. A schematic diagram of the classification of the
data-driven discovery is given in Figure 1.

Figure 1. A schematic diagram showing the major three approaches in the data-driven discovery of dynamical systems.

One is the pure data-driven approach. The other two are the physics informed data-driven approach. The second one is

based on soft constraints imposed in an associated loss function. The third one directly imposes the underlying physics

into neural networks by designing novel network architectures.

Among many principles of physics, we consider the General Equation for Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC) formalism [18–20]. GENERIC provides a general
mathematical framework describing states beyond equilibrium of a dynamical system [20], which
involves two separate generators for the reversible and irreversible dynamics. These generators
are required to satisfy some symmetry and degeneracy conditions, which constitute a key
feature of the GENERIC structure. These conditions are often interpreted as the first and second
principles of thermodynamics, which further can be expressed in the language of linear algebra.

Our goal is to embed the GENERIC structure directly into neural networks, yet to maintain
sufficient expressivity. By leveraging the level of prior physics information under the GENERIC
framework, we propose a systematical approach in designing neural network modules.

In the case where either one or all generators are known a priori, we design neural network
models for either energy or entropy or both by exploiting certain properties of the generators. Due
to the multiplicative structure of the gradient of neural networks, care needs to be taken into the
input layer in order to meet the degeneracy conditions. We thus introduce a transformation in the
first layer, which roughly speaking, projects input into a proper low-dimensional space on which
the degeneracy conditions hold. On the other hand, if no prior information is available, we model

Zhang, Z., Shin, Y., & Em Karniadakis, G. (2022). GFINNs: GENERIC formalism informed neural networks for
deterministic and stochastic dynamical systems. Philosophical Transactions of the Royal Society A, 380(2229), 20210207.

Penalize network with physics constraints through regularisation
Typically: PINNs (Physics-Informed Neural Networks)

Enforce physics constraints in
the network architecture

For now, soft constraints tend to under-perform high-fidelity methods
Hard constraints are promising for accelerated high-fidelity

13

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

End-to-end
Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

More accurate models

Larger timesteps /
Less iterations (Poisson)

Inverse problems

Innovative numerics

14

Fully resolved physicsWhat I can pay for

What’s missing?

Trainable model

Input

Output

Filter

What
was lost

ML / DL based
model for on-

the-fly use

 ' solver
<latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit><latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit><latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit><latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit>

More accurate models

15[1] Butler, T. D. & O’Rourke, P. J. (1977). Symp. (Int.) Combust. 16, 1503 – 1515.

DNS:
Resolved

flame

LES: e.g.
Artificially
thickened
flame [1]

More accurate models

16

H2 makes thin flames

CH4 H2

H2 makes complex flames

H2 will stress existing
turbulent combustion

models.

We can’t afford to wait
20 years to develop

new ones.

More accurate models

17

• Context: safety of industrial
complexes in combustible gas
leaks (notably H2)

• Reactive LES of very large domains

Fig. 1. Classical turbulent combustion diagram for premixed turbulent flames
[22,23] as a function of the length ratio (turbulence integral scale l t /flame thickness
δ0
l) and velocity ratio (rms (root mean square) velocity u ′ /flame speed S 0

l). The ap-
proximate locations of the SydGex database are indicated by the three oval curves:
Sydney’s small-scale experiment (SS), GexCon’s medium-scale experiment (MS) and
GexCon’s large-scale experiment (LS).
chamber exit. The pressure curve is very sensitive to the reaction
rate which is the quantity we want to investigate. No comparison
with velocity, temperature or species field will be performed here
but this is compensated by the fact that the comparison is not per-
formed for one or two regimes but for more than 10 cases where
the overall size of the setup, the fuel type and the configuration
(number and location of obstacles) will be changed systematically.

The SydGex database is presented in Section 2 . The setup of
the small-scale Sydney experiment is briefly recalled before pre-
senting the two replicas at medium- (Sydney’s experiment × 6)
and large-scale (Sydney’s experiment × 24.4). The LES code and
sub-grid models are described in Section 3 . LES of different op-
erating conditions were performed, varying the number of obsta-
cles, their position and the type of fuel (hydrogen, propane and
methane). Sections 4 (small-scale simulations) and 5 (medium-
scale and large-scale simulations) focus on the influence of the tur-
bulent combustion model comparing two different sub-grid scale
models, namely the algebraic closures of Colin et al. [47] and
Charlette et al. [48] , used in conjunction with the Thickened Flame
(TF) approach [47] . This exercice is similar to that done by Di Sarli
et al. [49] or Wen et al. [50] , except that their comparison of vari-
ous sub-grid scale combustion models relied on only one configu-
ration, whereas many different configurations of varying geometry
and size are used here to provide a more challenging assessment
of turbulent combustion models.
2. Experimental setup

The SydGex database contains three experimental setups: the
Sydney experiment called ‘original’ or ‘small-scale’ (SS) (0.25 m
long) configuration and its two upscaled versions, the ‘medium-
scale’ (MS) (1.5 m long) and ‘large-scale’ (LS) (6.1 m long) configu-
rations of GexCon.
2.1. Small-scale experiment

The original Sydney experiment [27,28] is sketched in Fig. 2 .
This semi-confined configuration consists in a square cross section
(0.05 × 0.05 m 2), 0.25 m long chamber with solid obstacles. Its
volume is 0.625 l. Three removable baffle plates can be placed at
various distances from the ignition source (overall blockage ratio of
0.4) while the central square obstacle (1.2 cm square, blockage ra-

Fig. 2. Explosion chamber configuration of Sydney [27,28] . The vessel is orientated
vertically in the experiment: the bottom end of the vessel is on the left of the figure
and the top end on the right.

Table 1
Configurations studied for the small-scale (SS) experi-
ment of Sydney [28] .
Fuel Configuration

BBBS OBBS OOBS BOOS

LPG ! ! ! !

CNG !

H 2 !

tio of 0.24) is fixed [28] . The bottom end of the chamber is closed
and the top end is opened out to the atmosphere. The vessel is ini-
tially filled with a premixed mixture of fuel and air at atmospheric
pressure and temperature. The mixture is then ignited by laser at
the closed end. Experimental results include pressure signals and
flame front visualizations for three different fuels, namely hydro-
gen (equivalence ratio "= 0.7), LPG (95% C 3 H 8 , 4% C 4 H 10 and 1%
C 5+ hydrocarbons by volume) ("= 1.0), and CNG (88.8% CH 4 , 7.8%
C 2 H 4 , 1.9% CO 2 and 1.2% N 2 with the remaining 0.3% being a mix-
ture of propane, propene, butane and pentane) ("= 1.0) [28] .

The arrangement of the baffle plates control the flame speed,
the flame front shape and the generated overpressure. The nomen-
clature of [28] is used here to name the different configurations:
for example, a configuration named BBOS refers to baffle plates
(B) at the first two locations (i.e., close to the ignition point)
and a small central obstacle (S) while configuration OOBS refers
to a unique baffle plate located close to the central obstacle. For
each configuration, the experiment was repeated at least 30 times
to obtain reliable results. The configurations computed by LES in
Section 4 are summarized in Table 1 : they allow to study the in-
fluence of the number of grids (OOBS versus OBBS and BBBS), the
influence of the position of the grids (BOOS versus OOBS) and the
influence of the fuel (LPG versus PNG and H 2).
2.2. Medium- and large-scale experiment

The medium- and large-scale experiments have been set up by
GexCon in 2012. Almost all the available measurements and di-
agnostics are shown in this paper, a few additional results being
available in [51] . Raw data are available upon request.

The medium-scale experiment is a replica of the small-scale ex-
periment of Sydney at scale 6. The combustion chamber is a 1.5
× 0.3 × 0.3 m 3 volume (135 l) with a vent opening. Contrary to
the Sydney experiment where the vessel was oriented vertically,
the vessel was positioned horizontally on a table due to the higher
intensity of the explosion. The three aluminum grids were posi-
tioned vertically inside the vessel. All dimensions of the MS rig

More accurate models

18

LOCAL FORMULATIONS:
• 1989 - Gouldin (fractal)
• 2000 - Colin et al.
• 2002 - Charlette et al.

DYNAMIC FORMULATIONS:
• 2011 - Wang et al.
• 2015 - Veynante & Moureau

Ξ : ℝ2k ↦ ℝ

CNN FORMULATION:
• 2019 - Lapeyre et al.

Ω

Ξ = fCNN(Ω, t)

Ξ : ℝk ↦ ℝ
Efficiency functions - local to global More accurate models

19

ϕDNSnΔ

nΔ

nΔ

DNS Mesh

n

n

n

ϕSGS
n

n

n

ϕLES

LES Mesh

Gaussian filtering equivalent
to flame thickening Δ

FΔ(n) = {e− 1
2 (n

σ)2
if n ∈ [1,N]

0 otherwiseCNN

Convolutional neural network

Building the dataset More accurate models

20

7

a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

32
|∇c|
|∇c|

c

fCNN

Conv 33, BN, ReLU
MaxPooling 23

UpSampling 23

Concatenate
Conv 13, ReLu

32

64 64 128 64

128

64 32
7

a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

Input

Segmented image

Architecture is adapted from a medical
image segmentation network [9]

More accurate modelsU-Net

21

Network is trained on increasing size inputs: 83, then 163, and finally 323.

32

c

32

64 64 128

128

3 5

9 13

21 29

Receptive field

More accurate models

22

More accurate models

Training
CNN

Training setup

Filter

c

AVBP DNS

Target setup

c

|∇c|
|∇c|

Filter

Detailed
comparison

|∇c|
|∇c|

23

More accurate models

Example snapshot in test set

DNS

LES
input

LES
model
target

Initial results were promising

Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural networks to estimate
turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264.

24

More accurate models

Similar config

Differences

Testing Database

Turbulent realisation
Flow dynamics

Geometry variations
…

Different config

Flow regimes
Chemistry
Geometry

Scale
…

Close
generalisation

Further
generalisation

Training
Database

25

More accurate models

Energies 2021, 14, 5096 7 of 23

Figure 1. Slices of the HIT DNS at t = 2t: velocity magnitude in the xz-plane and heat release rate in
the xy-plane.

3.2. Generalization Configuration: R2 Slot Burner Jet Flame
The configuration used to assess the generalizability of the CNN is the DNS of the

R2 slot jet flame studied by Luca et al. [49–51]. A fully premixed methane–air mixture
at temperature T = 800 K, pressure P = 4 bar, equivalence ratio f = 0.7, and bulk
velocity U = 100 m s�1 is injected through a slot of width H = 1.2 mm and surrounded
by a coflow of burnt gases. Chemistry is described by a skeletal chemical mechanism
containing 16 species and 72 reactions [50]. The corresponding laminar flame has a speed of
sL = 1 m s�1 and a thermal thickness dL = 110 m s�1. The domain dimensions are 28.8 mm,
19.2 mm, and 5.16 mm in the streamwise (x), crosswise (y), and spanwise (z) directions,
respectively. It is uniformly meshed with a resolution Dx = 20 µm. The progress-variable
field of the fully developed jet flame is shown in Figure 2. 5 uncorrelated snapshots from
instants where the jet is fully developed are used in this study, and form what will be called
the generalization set.

Figure 2. Slice of progress-variable field in R2 DNS.

3.3. Comments on the Differences and Similarities between the Two Configurations
The HIT and R2 flames feature very different domain geometries, flow dynamics, and

simulation parameters (Table 2). In addition, turbulence in the flame brush is induced by
homogeneous isotropic turbulence in one case and shear between the jet and the coflow in
the other. Previous studies involving CNNs investigated minor parametric variations in the
inlet condition [4], fuel species, and Karlovitz number [1], or turbulence intensity [5,8]. Sub-

Target [1]

Training: HIT [2]
• Similar turbulence/flame params
• Different fuel
• Different pressure, inlet temperature

Test

Energies 2021, 14, 5096 14 of 23

filtered DNS values nearly perfectly, while the algebraic models consistently overestimate
the variance.

This a priori evaluation of c02 models has shown that the CNN trained on the HIT
configuration was able to generalize accurately to the R2 flame and outperform constant
coefficient and dynamic algebraic models.

Figure 10. Evolution of transverse averages of the true c02 and model predictions along the streamwise
direction x.

5.3. Discussion on the Conditions for Generalization
Between the HIT training/test sets and the R2 generalization set, three key ratios

are conserved: u0/sL, lt/dL, and D/dL. It is important to understand the sensitivity of the
generalization of the CNN to these ratios, as they could place strict limits on the practical
applicability of the model.

The influence of u0/sL and lt/dL is analyzed by training a second CNN on the same
HIT configuration with halved initial values of u0/sL, lt/dL, leading to lesser wrinkling in
the turbulent flame front. When evaluated on R2, this second CNN had an error e = 0.301,
which is 30% higher than the reference CNN. Figure 11 shows that the effect of training on
a weaker HIT is noticeable in the first 4 mm of the flame near the inlet. The second CNN
underpredicts the SGS variance compared with the reference CNN and the filtered DNS.
This is coherent with the fact that it is trained on a weaker HIT, which contains lower c02
values than the original configuration. This brief study seems to indicate that the choice
of u0/sL, lt/dL is indeed impactful on the generalization accuracy of the CNN, but more
extensive work should be performed to fully understand the effect of these ratios.

The restriction to relying on a single value of D/dL can be relaxed by training the
CNN on a range of filter size values. An instance of the CNN was trained on a dataset
comprising the collection of training HIT snapshots, which were filtered at D/dL = 0.8,
1.2 and 1.6, for a total of 126 snapshots with 3 separate filter sizes. It was then tested
on R2 for the same filter sizes, as well as unseen values D/dL = 1, 1.4, and 2. Figure 12
shows the evolution of the error made by the CNN and DYN models with D/dL. When
D/dL increases, the performance of the DYN model deteriorates as the SGS modeling task
becomes more difficult. In contrast, the error made by the CNN is stable across all filter
sizes, including unseen ones. This suggests that with proper training, the CNN can be
accurate on a range of D/dL values instead of a single one. Note that the error made by this
CNN on D/dL = 0.8 is higher than the one reported in Table 4 for the CNN solely trained
on this filter size. This implies that a balance must be found between accuracy at a single
filter size, and validity across a range of values. Interestingly, providing the D/dL value as
an additional input channel for the CNN did not improve the results. The rest of this work
is presented with the original CNN trained with D/dL = 0.8.

[1] Luca, S.; Attili, A.; Bisetti, F. Direct Numerical Simulation of Turbulent Lean Methane-Air Bunsen Flames with Mixture
Inhomogeneities. In Proceedings of the 54th AIAA Aerospace Sciences Meeting AIAA, San Diego, CA, USA, 4–8 January 2016
[2] Xing, Victor, et al. "Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate
Subgrid-Scale Modeling." Energies 14.16 (2021): 5096.

26

More accurate models

Similar config

Differences

Testing Database

Turbulent realisation
Flow dynamics

Geometry variations
…

Different config

Flow regimes
Chemistry
Geometry

Scale
…

Close
generalisation

Further
generalisation

Training
Database

In-solver

Does the learning
still hold in a

feedback loop?

Solver <-> Model

A posterioriA priori

27

More accurate models

Training
CNN

AVBP DNS

Training setup

AVBP-DL LES
Detailed

comparison

Target setup

Xing, V, Deep learning for subgrid-scale modeling in large eddy simulations of turbulent premixed combustion, PhD thesis (2022)

28

Not just combustion!
A wall modeling application

More accurate models

29

More accurate models

Training data
Multiple Wall-Resolved LES

8

Figure 2: Preprocessing steps required to prepare the data for the training procedure.

tions and the boundary layer upstream of the blade in the N65 simulations. Coarse

tetrahadral meshes are produced for 12 different refinement level for each simulation,

with a nominal edge length in wall units, in the regions listed above, in the range

25 e
+ 80.

2. For each coarse tetrahedral mesh, the neighbourhood of the target walls is selected,

by preserving only nodes separated from the target walls W by NH edges or less. The

resulting tetrahedral meshes are conformal and referred to as coarse near-wall meshes

hereafter. Unless otherwise specified, NH = 3 is used.

3. A fine tetrahedral mesh is produced, associated with a nominal edge length e
+ = 4.

The instantaneous fields of the training database are interpolated linearly onto this

fine mesh. The resulting fields are used as source data for the filtering operation.

4. The instantaneous data are filtered onto and at the resolution of the coarse near-wall

meshes. This low-pass filtering operation attenuates large frequencies, associated with

turbulent scales that cannot be resolved using the target computational grid. A surface

filter is used to filter the wall shear stress and a volume filter is used to filter the velocity

components in the bulk of the domain. We denote (·) the volume filter associated with

For each:

30

More accurate models

“MeshGraphNet” [1] architecture operates
directly on unstructured mesh nodes 11

Figure 3: Graphical representation of the Encode-Process-Decode architecture.

Decoder: The latent space after the last message-passing step is decoded back to physical

space at nodes only, Yi = f
V

�
(bV N

i
), with f

V

�
a multilayer perceptron.

The multilayer perceptrons fV

"
, fE

"
, fV

⇡
and f

E

⇡
each have n` = 2 layers composed of dL neural

units and followed by layer normalisation [3]. The output of the i-th neuron of hidden layer

` is given by

z̄
(i)
`

= w̄
(i)
`

z
(i)
`

� hz(i)
`
iFrD

(z(i)
`

� hz(i)
`
iF)2

E

F

+ b̄
(i)
`
, (6)

where h·iF denotes an average across features and with

z
(i)
`

= �

X

j

w
(i,j)
`

z̄
(j)
`�1 + b

(i)
`

!
, (7)

where the weights and biases w̄
(i)
`

, w
(i,j)
`

, b̄
(i)
`

and b
(i)
`

are learnable parameters and � the

activation function, namely a rectified linear unit �(x) = max(0, x) in the present work. The

[1] Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., & Battaglia, P. (2021). Learning Mesh-Based Simulation with Graph Networks.
In International Conference on Learning Representations.

8

Figure 2: Preprocessing steps required to prepare the data for the training procedure.

tions and the boundary layer upstream of the blade in the N65 simulations. Coarse

tetrahadral meshes are produced for 12 different refinement level for each simulation,

with a nominal edge length in wall units, in the regions listed above, in the range

25 e
+ 80.

2. For each coarse tetrahedral mesh, the neighbourhood of the target walls is selected,

by preserving only nodes separated from the target walls W by NH edges or less. The

resulting tetrahedral meshes are conformal and referred to as coarse near-wall meshes

hereafter. Unless otherwise specified, NH = 3 is used.

3. A fine tetrahedral mesh is produced, associated with a nominal edge length e
+ = 4.

The instantaneous fields of the training database are interpolated linearly onto this

fine mesh. The resulting fields are used as source data for the filtering operation.

4. The instantaneous data are filtered onto and at the resolution of the coarse near-wall

meshes. This low-pass filtering operation attenuates large frequencies, associated with

turbulent scales that cannot be resolved using the target computational grid. A surface

filter is used to filter the wall shear stress and a volume filter is used to filter the velocity

components in the bulk of the domain. We denote (·) the volume filter associated with

31

More accurate models

Dupuy, D., Odier, N. and Lapeyre, C. (2023). Modelling the wall shear stress in large-eddy simulation using graph neural
networks. To appear in Data-Centric Engineering.

Backward facing step LES
with the network as wall model

Validation case: GNN in the LES

25

(a) Reference

(b) Law-of-

the-wall model

(c) GNN model,

N = 1

(d) GNN model,

N = 2

(e) GNN model,

N = 3

(f) GNN model,

N = 4

(g) GNN model,

N = 5

Figure 10: A posteriori validation: Mean streamwise velocity in the flow over a

backward-facing step according to (a) the reference wall-resolved simulation, (b) a

large-eddy simulation with an algebraic wall stress model and (c–g) graph neural network

wall models. The contour lines denotes the level sets -4, -2, 0, 4, 8, 12 and 16 m/s. There

are no values within the first WMLES cell because the wall-modelled large-eddy

simulations do not provide a physical velocity at the wall.

mation of the reattachment point location in all wall modelled large-eddy simulations (figure

13). The mean squared error between the shear stress of the wall-modelled simulations and

the reference wall-resolved simulation is given in table IV. The table summarises the fact

that, for this particular simulation, the model associated with N = 4 message-passing steps

leads to more accurate results than the algebraic model based on the law of the wall. Hence,

25

(a) Reference

(b) Law-of-

the-wall model

(c) GNN model,

N = 1

(d) GNN model,

N = 2

(e) GNN model,

N = 3

(f) GNN model,

N = 4

(g) GNN model,

N = 5

Figure 10: A posteriori validation: Mean streamwise velocity in the flow over a

backward-facing step according to (a) the reference wall-resolved simulation, (b) a

large-eddy simulation with an algebraic wall stress model and (c–g) graph neural network

wall models. The contour lines denotes the level sets -4, -2, 0, 4, 8, 12 and 16 m/s. There

are no values within the first WMLES cell because the wall-modelled large-eddy

simulations do not provide a physical velocity at the wall.

mation of the reattachment point location in all wall modelled large-eddy simulations (figure

13). The mean squared error between the shear stress of the wall-modelled simulations and

the reference wall-resolved simulation is given in table IV. The table summarises the fact

that, for this particular simulation, the model associated with N = 4 message-passing steps

leads to more accurate results than the algebraic model based on the law of the wall. Hence,

25

(a) Reference

(b) Law-of-

the-wall model

(c) GNN model,

N = 1

(d) GNN model,

N = 2

(e) GNN model,

N = 3

(f) GNN model,

N = 4

(g) GNN model,

N = 5

Figure 10: A posteriori validation: Mean streamwise velocity in the flow over a

backward-facing step according to (a) the reference wall-resolved simulation, (b) a

large-eddy simulation with an algebraic wall stress model and (c–g) graph neural network

wall models. The contour lines denotes the level sets -4, -2, 0, 4, 8, 12 and 16 m/s. There

are no values within the first WMLES cell because the wall-modelled large-eddy

simulations do not provide a physical velocity at the wall.

mation of the reattachment point location in all wall modelled large-eddy simulations (figure

13). The mean squared error between the shear stress of the wall-modelled simulations and

the reference wall-resolved simulation is given in table IV. The table summarises the fact

that, for this particular simulation, the model associated with N = 4 message-passing steps

leads to more accurate results than the algebraic model based on the law of the wall. Hence,

26

Figure 11: A posteriori validation: Profile of mean streamwise velocity in the flow over a

backward-facing step at the location x/hs = 1, 3, 7, 9, scaled by the free-stream velocity

u0. The horizontal solid line gives the height of the first point off the wall.

Figure 12: A posteriori validation: Mean wall shear stress profile in the flow over a

backward-facing step.

these a posteriori results are consistent with the a priori tests of section IV.1 and confirms

that a graph neural network wall model can lead to large improvements over a model based

on the law of the wall for turbulent separated flows.

The N parameter controls receptive field:
• N=1 -> similar to log law
• N>1 increases performance (until plateau)

32

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Innovative numerics Precision of numerical methods requires
differentiable solvers to train through

33

Innovative numerics

Pannekoucke, O. and Fablet, R. (2020). Pde- netgen 1.0: from
symbolic partial differential equation (pde) representations of
physical processes to trainable neural network representations.
Geoscientific Model Development, 13(7):3373–3382.

package called PDE-NetGen ([Pannekoucke and Fablet, 2020]) that translates a
system of partial di↵erential equations to a di↵erentiable neural network model
(example in figure 3), by using finite di↵erence weights as a kernel of convolu-
tional layers in order to compute derivatives (see figure 2). Given a PDE of this
type :

@tu = F (u, @↵u) (1)

PDE-NetGen translates the PDE and the time scheme into a neural network
code, making a link between numerical schemes and neural networks.

Figure 2: The link between finite di↵erences and convolutional layers.

Figure 3: On the left the EDP written with Sympy and on the right the gener-
ated code.

4

https://github.com/opannekoucke/pdenetgen

Precision of numerical methods requires
differentiable solvers to train through

3 Methodology

3.1 Dataset description

We have 3 years of satellite images data over mainland France with cloud type
classification, it is a METEO FRANCE data fusion product. It combines dif-
ferent outputs (satellite imagery, numerical weather prediction parameters, etc)
to compute the Cloud Type classification. There are 12 cloud classes and the
time step is 15 minutes.

3.2 Hybrid model

We can use the transport equation as physical information to represent the
transport of cloud by winds :

j 2 [|1, 12|], @f
j

@t
(t, x, y) + u(x, y)

@f j

@x
(t, x, y) + v(x, y)

@f j

@y
(t, x, y) = 0 (2)

With (u, v) the velocity field and f j represents di↵erent cloud types.
The problem is to get the velocity field ? The idea is to introduce a U-Net

architecture (see figure 1) taking as input a sequence of observations, mainly,
the observations at times t0 and at t�1, and we get in output a field (u, v) to be
given as input to the physical model to finally getting a sequence of predictions
over a lead time (mainly 1h to 2h30). This model is trained end-to-end, using
only our satellite images data. We should note the only trainable part is the
U-Net, other layers in the physical model have fixed weights to compute the
derivatives and the time integration.

Keras layers modeling
the PDE

Trainable
Output Sequence

Keras layers modeling
RK4 Time Scheme

 Frozen

U-Net

Inputs

One hot encoding

Softmax()

Figure 4: Hybrid model with a physical component modelling the cloud trans-
port by winds.

For numerical reasons, we added a di↵usion term to the equation 2:

@f j

@t
+ u

@f j

@x
+ v

@f j

@y
= d

✓
@2f j

@x2
+

@2f j

@y2

◆
(3)

5

ElMontassir, R., Lapeyre, C., Pannekoucke,
O. (2022). Hybrid Physics-AI Approach for

Cloud Cover Nowcasting. ECMWF Machine
Learning Workshop.

34

Innovative numerics
Fully resolved physicsWhat I can pay for

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

Bar-Sinai et al. PNAS Latest Articles | 5 of 6

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

Bar-Sinai et al. PNAS Latest Articles | 5 of 6

Fine 8x Coarse 16x Coarse

Cr
as

h

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

x

t

35

Innovative numerics

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

To train through the solver,
it must be differentiable.

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

36

Innovative numerics

CFD Filtered CFDCFD + NN

CFD
solver

rewritten in
Julia (fully

differentiable
framework)

37

Innovative numerics

Unstructured numerical scheme
(popular at CERFACS):

Two-step Taylor-Galerkin type C
TTGC

38

Innovative numerics
TTGC: typical unstructured numerical scheme

Usually optimised globally

Equally spaced mesh Irregular mesh

39

Innovative numerics

Global optimal is not a local optimal!

Allow to change locally in the mesh

Differentiate TTGC solver
Supply gradients to NLopt (optimizer)

𝛾

40

Unequally spaced

41

Unequally spaced

42

Drozda, L. et al. (2021). Data-driven Taylor-Galerkin finite-element scheme for convection problems.
The Symbiosis of Deep Learning and Differential Equations - Neurips 2021 Workshop

Innovative numerics

Differentiable Euler Solver in Julia (Zygote)

-> Too many limitations with mutability
Development of dedicated open-source

C++ / Tapenade solver: Anamika

https://cerfacs.fr/coop/DSL

Locally-adaptive numerical
schemes for unstructured solvers

43

Poisson solvers

Innovative numerics

44

Innovative numerics

Advection

Pressure
Correction

xi+1

> fast classical
solver

[1] Tompson, Jonathan, et al. "Accelerating eulerian fluid simulation with convolutional networks."
Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

Neural network
replaces this

Strategy originally proposed as « FluidNet » [1]

> slow iterative solver
(up to 80% total

computation time)

45

Innovative numerics

CNN Jacobi 200

Full network approach

46

Innovative numerics

• Interesting results but robustness problems

• How could we guarantee the accuracy of the pressure correction? => Hybrid

CNNJacobi 200

Full network approach

47

Innovative numerics

Ajuria Illarramendi, Ekhi, et al. "Towards an hybrid computational strategy based on
deep learning for incompressible flows." AIAA Aviation 2020 forum. 2020.

Advection

Pressure
Correction

xi

xi+1

> fast classical
solver

> slow iterative
solver

> neural
network initial guess

Iterative solver
converges to

precision if needed

CNNJacobi 200 CNNJacobi 200

Hybrid approach

48

Innovative numericsHybrid approach

AI-based method: 1.5x faster

Traditional method

Advection

Pressure
Correction

xi+1

> fast classical
solver

> slow iterative
solver

> neural
network initial guess

Iterative solver
converges to

precision if needed

xi

Ajuria Illarramendi, Ekhi, et al. "Towards an hybrid computational strategy based on
deep learning for incompressible flows." AIAA Aviation 2020 forum. 2020.

49

HPC for Hybrid Simulation

CPU/GPU architectures

Mesh issues ‣ Interpolation strategies
‣ Innovative network architectures

50

Jean Zay Supercomputer
CNRS - IDRIS, France

51

CPU : Navier-Stokes solver

(e.g. AVBP)

GPU : Neural Net

(TensorFlow)

𝐷𝑢
𝐷𝑡

= − ∇𝑝 + 𝜇∇2𝑢 + 𝜚𝐹

Physical fields

Predictions

CPU/GPU architectures

52

CNN: Pixels / VoxelsUnstructured mesh

Mesh mismatch => on-the-fly interpolation (CWIPI library)

Mesh issues

53

GNN: Same meshUnstructured mesh

Direct use of Mesh Graph Networks can alleviate interpolation
Serhani, A., Xing, V., Dupuy, D., Lapeyre, C., Staffelbach, G. (2022). High-performance hybrid coupling of a CFD solver to deep neural networks.

33rd Parallel CFD International Conference, May 25-27, Alba, Italy.

Mesh issues

54

No partition overlap With partition overlapGPU Partitions

This shouldn’t happen…

Domain MeshMESH

CPU 0:0

CPU 0:2

CPU 0:1

CPU 0:3

CPU 1:0

CPU 1:2

CPU 1:1

CPU 1:3
CPU-level partitioning
(nb of AVBP processes)

Hierarchical domain discretization with treepart

GPU 0:0

GPU 0:1

GPU 1:0

GPU 1:1
GPU-level partitioning
(nb of Python processes)

Node-level partitioningNODE 0 NODE 1

PhyDLL :
the Physics - Deep Learning CoupLer

(open-source software)
https://phydll.readthedocs.io

Parallel scaling

55

Hybrid-simulation:

More accurate models

56

Hybrid-simulation:

More accurate models

Hybrid simulation:

Innovative numerics

57

Hybrid-simulation:

More accurate models

Hybrid simulation:

Innovative numerics

Hybrid HPC:

CPUs / GPUs / …?

58

Recent Papers
‣ Dupuy, D., Odier, N. and Lapeyre, C. (2023). Modelling the wall shear stress in large-eddy simulation using graph neural networks. To appear in Data-Centric Engineering.

‣ Lazzara, M., Chevalier, M., Colombo, M., Garay Garcia, J., Lapeyre, C., Teste, O. (2022). Surrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction
approach. Aerospace Science and Technology, 126, 107629.

‣ Yewgat, A., Busby, D., Chevalier, M. et al. (2022). Physics-constrained deep learning forecasting: an application with capacitance resistive model. Comput Geosci.

‣ Besombes, C. et al. (2021). Producing realistic climate data with GANs. Nonlinear Processes in Geophysics, 28, 347–370.

‣ Xing V. et al. (2021). Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling. Energies 14(16):5096.

‣ Cellier, A. et al. (2021). Detection of precursors of combustion instability using convolutional recurrent neural networks. Combustion and Flame, Volume 233, 111558.

‣ Lapeyre, C.J. et al. (2019). Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264.

Recent Conferences
‣ Serhani, A., Xing, V., Dupuy, D., Lapeyre, C., Staffelbach, G. (2022). High-performance hybrid coupling of a CFD solver to deep neural networks. 33rd Parallel CFD International Conference, May 25-27, Alba, Italy.

‣ ElMontassir, R., Lapeyre, C., Pannekoucke, O. (2022). Hybrid Physics-AI Approach for Cloud Cover Nowcasting. ECMWF Machine Learning Workshop.

‣ Drozda, L., Mohanamuraly, P., Realpe, Y., Lapeyre, C., Adler, A., Daviller, G., & Poinsot, T. (2021). Data-driven Taylor-Galerkin finite-element scheme for convection problems. The Symbiosis of Deep Learning and
Differential Equations - Neurips 2021 Workshop

‣ Yewgat, A., Busby, D., Chevalier, M., Lapeyre, C. & Teste, O. (2020) Deep-CRM: A New Deep Learning Approach for Capacitance Resistive Models. 17th European Conference on the Mathematics of Oil Recovery,
September 14-17 2020.

‣ Lapeyre, C. J., Cazard, N., Roy, P. T., Ricci, S., & Zaoui, F. (2019). Reconstruction of Hydraulic Data by Machine Learning. SimHydro 2019, Nice, France, June 12-14, arXiv:1903.01123.

‣ Ronan Paugam, Melanie Rochoux, Nicolas Cazard, Corentin Lapeyre, William Mell, Joshua Johnston, and Martin Wooster: Computing High Resolution Fire Behavior Metrics from Prescribed Burn using Handheld Airborne
Thermal Camera Observations. The 6th International Fire Behaviour and Fuels Conference, Marseille, May 2019.

