ERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Leveraging AI for better high-fidelity CFD without compromising accuracy and reliability

Corentin Lapeyre Research Scientist, CERFACS

NHR4CES Community Workshop • 2023.03.01 Machine learning in Computational Fluid Dynamics

NHR4 CES

www.cerfacs.fr

NHR for Compute Engineer Science

ellence
ational -

Climate Variability and Predictability

Environment and Safety

Climate - air transport interactions

Aerodynamics and Aerocoustics

Hydrogen combustion

Propulsion

SAFRAN CCOES CET ARBUS

Simulation Tools

- Marine Marine

System Models

6 | **Z** CERFACS **E E E E**

Steady-state simulation

Unsteady simulation (High fidelity)

Direct numerical simulation

Many ML applications

Active research field

Emerging field

Тоо expensive

Hybrid High-Fidelity Simulation

(2022)

These results benefitted of funding or developments from. project ATOM (DGAC/SafranTech No 2018-39), PRACE (20th Call Project Access FULLEST), EXCELLERAT (H2020 823591), EPEEC (H2020 801051) and GENCI (A0122405074).

More accurate models

Innovative numerics

Zhang, Z., Shin, Y., & Em Karniadakis, G. (2022). GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems. *Philosophical Transactions of the Royal Society A*, 380(2229), 20210207.

Penalize network with physics constraints through regularisation Typically: PINNs (Physics-Informed Neural Networks)

For now, <u>soft</u> constraints tend to under-perform high-fidelity methods Hard constraints are promising for accelerated high-fidelity

Z CERFACS

Fully resolved physics

More accurate models

14 | **ZCERFACS E E**

[1] Butler, T. D. & O'Rourke, P. J. (1977). Symp. (Int.) Combust. 16, 1503 – 1515. 15 | **ZCERFACS I I**

More accurate models

<u>DNS:</u> Resolved flame

More accurate models

H₂ makes **complex** flames

H₂ will stress existing turbulent combustion models.

We can't afford to wait 20 years to develop new ones.

16 | **ZCERFACS I I I I**

More accurate models

Efficiency functions - local to global **LOCAL FORMULATIONS:** 1989 - Gouldin (fractal) 2000 - Colin *et al.* 2002 - Charlette et al.

DYNAMIC FORMULATIONS:

- 2011 Wang et al.
- 2015 Veynante & Moureau

CNN FORMULATION: 2019 - Lapeyre et al.

$\Xi: \mathbb{R}^k \mapsto \mathbb{R}$

 $\Xi: \mathbb{R}^{2k} \mapsto \mathbb{R}$

CERFACS

Building the dataset

Convolutional neural network

More accurate models

Input

Architecture is adapted from a medical image segmentation network [9]

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

More accurate models

Conv 3³, BN, ReLU MaxPooling 2³ UpSampling 2³ Concatenate Conv 1³, ReLu

Network is trained on increasing size inputs: 8³, then 16³, and finally 32³.

More accurate models

Example snapshot in test set

Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264.

Initial results were promising

ECERFACS

Training: HIT [2]

- Similar turbulence/flame params
- Different fuel
- Different pressure, inlet temperature

[1] Luca, S.; Attili, A.; Bisetti, F. Direct Numerical Simulation of Turbulent Lean Methane-Air Bunsen Flames with Mixture Inhomogeneities. In Proceedings of the 54th AIAA Aerospace Sciences Meeting AIAA, San Diego, CA, USA, 4–8 January 2016
[2] Xing, Victor, et al. "Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling." Energies 14.16 (2021): 5096. More accurate models

ZCERFACS

More accurate models

In-solver

Does the learning still hold in a feedback loop?

Solver <-> Model

A posteriori ECERFACS 26

Xing, V, Deep learning for subgrid-scale modeling in large eddy simulations of turbulent premixed combustion, PhD thesis (

More accurate models

tailed parison

Not just combustion! A wall modeling application

Training data Multiple Wall-Resolved LES

"MeshGraphNet" [1] architecture operates directly on unstructured mesh nodes

[1] Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., & Battaglia, P. (2021). Learning Mesh-Based Simulation with Graph Networks. In International Conference on Learning Representations.

²⁵ o in the LES

- 25

5

 $u \,[\mathrm{i} \mathrm{m/s}]$

- 25

- 0

5

- 25

0

- 25 5

- 0

- 25

- 0

The *N* parameter controls receptive field:

- N=1 -> similar to log law
- N>1 increases performance (until plateau)

- 25 5 eddy simulation using graph neural

Z CERFACS 31

Precision of numerical methods requires differentiable solvers to train through

Sympy $\frac{\partial}{\partial t}c(t,x) = -u(x)\frac{\partial}{\partial x}c(t,x)$ import sympy from sympy import (Function, symbols, init_printing, Derivative, latex, Add, Mul, Pow, Integer, Rational, Float, Symbol, symbol, srepr, Tuple init_printing() from pdenetgen import NNModelBuilder, Eq **Keras Layers** t, x = symbols('t x') c = Function('c')(t,x)# Keras code closure = sympy.Function('closure')(t,x) $u = Function('{u}')(x)$ # 2) Implementation of derivative as ConvNet # Compute derivative kernel_Dc_x_o1 = np.asarray([-1/(2*self.dx[self.coordinates.index('x')]),0.0, advection_dynamics = [1/(2*self.dx[self.coordinates.index('x')])]).reshape((3,)+(1,1)) Eq(Dc_x_o1 = DerivativeFactory((3,),kernel=kernel_Dc_x_o1,name='Dc_x_o1')(c) Derivative(c,t), -u*Derivative(c,x) # 3) Implementation of the trend as NNet display_system(advection_dynamics) # Computation of trend_c mul_0 = keras.layers.multiply([Dc_x_01,u],name='MulLayer_0') trend_c = keras.layers.Lambda(lambda x: -1.0*x,name='ScalarMulLayer_0')(mul_0) advection_NN_builder = NNModelBuilder(advection_dynamics, "Advection") print(advection NN builder.code) exec(advection_NN_builder.code)

ElMontassir, R., Lapeyre, C., Pannekoucke, O. (2022). Hybrid Physics-AI Approach for Cloud Cover Nowcasting. ECMWF Machine Learning Workshop.

advection = Advection(shape=(n,))

Innovative numerics

Pannekoucke, O. and Fablet, R. (2020). Pde- netgen 1.0: from symbolic partial differential equation (pde) representations of physical processes to trainable neural network representations. Geoscientific Model Development, 13(7):3373–3382.

ZCERFACS 33

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Innovative numerics

To train *through* the solver, it must be *differentiable*.

CFD + NN

Innovative numerics

CFD solver rewritten in Julia (fully differentiable framework)

$u^{n+1} = u^n + \Delta t \ \tilde{u}_t^n + \gamma \ \Delta t^2 \ u_{tt}^n$

Unstructured numerical scheme (popular at CERFACS): Two-step Taylor-Galerkin type C TTGC

$ilde{u}^n = u^n + (0.5 - \gamma) \Delta t \, u^n_t + (1/6) \, \Delta t^2 \, u^n_{tt}$

Z CERFACS 37

$$u^{n+1} = u^n + \Delta t \ ilde{u}^n_t + oldsymbol{\gamma} \ \Delta t^2 \ u^n_{tt} \qquad oldsymbol{\gamma} = oldsymbol{0}.oldsymbol{0}$$

Equally spaced mesh

Innovative numerics

Global optimal is not a local optimal!

Allow γ to change **locally** in the mesh

Innovative numerics

Differentiate TTGC solver Supply gradients to **NLopt** (optimizer)

Locally-adaptive numerical schemes for unstructured solvers

Drozda, L. et al. (2021). Data-driven Taylor-Galerkin finite-element scheme for convection problems. The Symbiosis of Deep Learning and Differential Equations - Neurips 2021 Workshop

Innovative numerics

Differentiable Euler Solver in Julia (Zygote)

-> Too many limitations with mutability Development of dedicated open-source C++ / Tapenade solver: Anamika

https://cerfacs.fr/coop/DSL

Poisson solvers

Innovative numerics

Strategy originally proposed as « FluidNet » [1]

[1] Tompson, Jonathan, et al. "Accelerating eulerian fluid simulation with convolutional networks." *Proceedings of the 34th International Conference on Machine Learning-Volume 70.* JMLR. org, 2017.

Innovative numerics

Full network approach

CNN

Innovative numerics

Jacobi 200

Full network approach

Interesting results but robustness problems

How could we guarantee the accuracy of the pressure correction? => Hybrid

Innovative numerics

ZCERFACS

Hybrid approach

Ajuria Illarramendi, Ekhi, et al. "Towards an hybrid computational strategy based on deep learning for incompressible flows." AIAA Aviation 2020 forum. 2020.

Innovative numerics

47 | **ZCERFACS – –**

Hybrid approach

Ajuria Illarramendi, Ekhi, et al. "Towards an hybrid computational strategy based on deep learning for incompressible flows." AIAA Aviation 2020 forum. 2020.

Innovative numerics

Traditional method

Al-based method: 1.5x faster

HPC for Hybrid Simulation

CPU/GPU architectures

Mesh issues

Interpolation strategies
Innovative network architectures

Jean Zay Supercomputer CNRS - IDRIS, France

$$\frac{Du}{Dt} = -\nabla p + \mu \nabla^2 u + \varrho F$$

CPU : Navier-Stokes solver (e.g. AVBP)

CPU/GPU architectures

Predictions

Unstructured mesh

Mesh mismatch => on-the-fly interpolation (CWIPI library)

Mesh issues

CNN: Pixels / Voxels

Unstructured mesh

Direct use of Mesh Graph Networks can alleviate interpolation

Serhani, A., Xing, V., Dupuy, D., Lapeyre, C., Staffelbach, G. (2022). High-performance hybrid coupling of a CFD solver to deep neural networks. 33rd Parallel CFD International Conference, May 25-27, Alba, Italy.

Mesh issues

GNN: Same mesh

This shouldn't happen...

GPU Partitions

Hierarchical domain discretization with treepart

PhyDLL : the Physics - Deep Learning CoupLer (open-source software)

https://phydll.readthedocs.io

Hybrid-simulation:

More accurate models

Hybrid-simulation:

More accurate models

Hybrid simulation:

Innovative numerics

Hybrid-simulation:

More accurate models

Hybrid simulation:

Hybrid HPC:

Innovative numerics

CPUs / GPUs / ...?

- Dupuy, D., Odier, N. and Lapeyre, C. (2023). Modelling the wall shear stress in large-eddy simulation using graph neural networks. To appear in *Data-Centric Engineering*.
- approach. Aerospace Science and Technology, 126, 107629.
- Yewgat, A., Busby, D., Chevalier, M. et al. (2022). Physics-constrained deep learning forecasting: an application with capacitance resistive model. Comput Geosci.
- ▶ Besombes, C. *et al.* (2021). Producing realistic climate data with GANs. Nonlinear Processes in Geophysics, 28, 347–370.
- Xing V. et al. (2021). Generalization Capability of Convolutional Neural Networks for Progress Variable Variance and Reaction Rate Subgrid-Scale Modeling. Energies 14(16):5096.
- Cellier, A. et al. (2021). Detection of precursors of combustion instability using convolutional recurrent neural networks. Combustion and Flame, Volume 233, 111558.
- Lapeyre, C.J. et al. (2019). Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264.

Recent Conferences

- ElMontassir, R., Lapeyre, C., Pannekoucke, O. (2022). Hybrid Physics-AI Approach for Cloud Cover Nowcasting. ECMWF Machine Learning Workshop.
- Differential Equations Neurips 2021 Workshop
- September 14-17 2020.
- Lapeyre, C. J., Cazard, N., Roy, P. T., Ricci, S., & Zaoui, F. (2019). Reconstruction of Hydraulic Data by Machine Learning. SimHydro 2019, Nice, France, June 12-14, arXiv:1903.01123.
- Thermal Camera Observations. The 6th International Fire Behaviour and Fuels Conference, Marseille, May 2019.

ERFACS

Recent Papers

Lazara, M., Chevalier, M., Colombo, M., Garay Garcia, J., Lapeyre, C., Teste, O. (2022). Surrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction

Serhani, A., Xing, V., Dupuy, D., Lapeyre, C., Staffelbach, G. (2022). High-performance hybrid coupling of a CFD solver to deep neural networks. 33rd Parallel CFD International Conference, May 25-27, Alba, Italy.

• Drozda, L., Mohanamuraly, P., Realpe, Y., Lapeyre, C., Adler, A., Daviller, G., & Poinsot, T. (2021). Data-driven Taylor-Galerkin finite-element scheme for convection problems. The Symbiosis of Deep Learning and

• Yewgat, A., Busby, D., Chevalier, M., Lapeyre, C. & Teste, O. (2020) Deep-CRM: A New Deep Learning Approach for Capacitance Resistive Models. 17th European Conference on the Mathematics of Oil Recovery,

• Ronan Paugam, Melanie Rochoux, Nicolas Cazard, Corentin Lapeyre, William Mell, Joshua Johnston, and Martin Wooster: Computing High Resolution Fire Behavior Metrics from Prescribed Burn using Handheld Airborne

