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Abstract—In contrast to peripheral blood, cells in bone marrow
microscopy images are not only characterized by the cell lineage
but also a maturity stage within the lineage. As maturation is a
continuous process, the differentiation between various stages
falls into the category of (ordinal) regression. In this work,
we propose Spatial Maturity Regression – a technique that
regularizes the learning process to enforce a sensible positioning
of maturity stages in the embedding space. To this end, we
propose and evaluate several curve models, target definitions
and loss function that incorporate this domain knowledge. We
show that the classification F-scores improve up to 2.4 percentage
points when enforcing regression targets along learnable curves in
the embedding space. This technique further allows visualization
of individual predictions by providing the projected position
along the learnt curve.
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I. INTRODUCTION

Hematopoietic diseases such as leukemia require a detailed
analysis of the distribution of cells for a successful diagnosis.
The cell count is typically performed with microscopy images
of human bone marrow, as this enables insights into the
maturation process, which is affected by many forms of
leukemia. Due to the high workload for medical experts, it
is desirable to support clinicians with an automated pipeline.
An automated pipeline has fewer (time) restrictions on the
number of cells evaluated for each cell count. This leads to
a considerably higher number of cells, which is beneficial for
the subsequent statistical analysis as a basis for diagnosis.

In the bone marrow, cells can form several different cell
types, also denoted as cell lineages. Within each lineage,
various maturity stages from immature to mature can be
observed. Only the mature cells are capable of fulfilling their
designated biological tasks. Hence, a deviation from typical
ratios of immature to mature cells often indicates diseases978-1-6654-6964-7/22/$31.00 ©2022 IEEE



such as leukemia and is, therefore, of major importance for
the diagnosis.

Several approaches have been proposed for the classification
of hematopoietic cells [1]–[3]. However, while the various
maturity stages are often differentiated into specific classes,
the process itself is of continuous nature. This continuity as
well as the predecessor-successor relationship between cell
types of the same lineage should also be considered by
the classification algorithm, for example by using (ordinal)
regression methods.

Typically, regression is performed by replacing the classifi-
cation head of a neural network with an estimator for a scalar
value. As such, it is a well-established technique. However,
the incorporation of multiple lineages is not straight-forward
with this architecture. This use-case is better suitable for
representation learning techniques, which offer ways to adapt
the embedding space directly, for example with the Triplet
Margin Loss (TML) [4].

A similar idea has been published by Kwitt et al. [5].
By utilizing known, continuous features and extracting them
from trained representations, the authors obtain more suitable
representations for classification. In contrast to this work, we
regularize the entire learning process by incorporating ordinal
information on the maturation process within cell lineages into
training. To this end, we define curves in the embedding space
that define the cell maturation through regression targets along
the curves. The ordinal maturity information is thus trans-
formed into high-dimensional target representations, ordered
by their maturity progression along curves.

We propose two linear as well as a polynomial curve
model based on Bézier curves. All curve models are partially
learnt from the current representations produced by the neural
network and partially defined by hand, reducing the available
degrees of freedom. We further include an option for the
regression targets that incorporates knowledge about the cell
frequency in the dataset.

For the loss function, we propose an n-dimensional,
projection-based as well as a parametric loss version that
works in lower dimensions.

The proposed methods do not only aim at improving clas-
sification scores, they also yield better interpretable results.
Utilizing projections onto the curve model, individual pre-
dictions can be explained in more detail – for example, for
identification of samples that are in between two subsequent
maturity stages.

II. IMAGE DATA

Our hematopoietic cell dataset consists of images obtained
from human bone marrow samples. The samples are stained
using Pappenheim-staining [6] and digitized with a magnifica-
tion of 63× using automatic immersion oiling. The resulting
whole slide images are analyzed by medical experts, who
extract representative regions, similar to the typical diagnostic
workflow.

Annotations are obtained in a semi-automatic process by
first performing automatic detection using U-Net and Water-

shed as proposed by Gräbel et al. [7]. After manual validation
and correction, the respective cell type (class) is assigned to
each individual cell by medical experts. This constitutes the
ground truth. In this work, we focus on two lineages that show
maturity regression: blasts plus neutrophilic cells (promyelo-
cyte, myelocyte, metamyelocyte, band granulocyte, segmented
granulocyte) and cells of the erythropoiesis (proerythroblast,
basophilic erythroblast, polychromatic erythroblast, orthochro-
matic erythroblast). Additionally, we consider basophilic and
eosinophilic granulocytes, lymphocytes, promonocytes and
monocytes as additional classes that are not optimized with
respect to the proposed techniques as they do not show a
sufficient maturity progression.

This results in 4 560 annotated cell patches of size 224 ×
224 px. Figure 1 shows examples for both cell lineages.

III. METHODS

We propose Spatial Maturity Regression (SMR), a regu-
larization technique that performs regression of the maturity
stages of individual cell lineages along curves in the em-
bedding space. SMR aims at improving the representations
learnt by a neural network by computing sensible cell type
representations based on maturity progression information.
This requires a definition of curve models, target layouts along
the curves as well as appropriate loss functions which will be
presented in the next sections.

A. Curve Models and Regression Targets

In this work, we utilize three methods of obtaining a curve
model from our representations as shown in Figure 2. Per
lineage, this results in one model that is required to define
regression targets for maturity stages within this lineage.
We describe the relationship between cell types of the same
lineage either using linear or polynomial models. Whilst the
linear curve models allow for better interpretability of learnt
representations, the polynomial model allows for the most
degrees of freedom – fitting curve models more closely to
the data.

The first method requires pre-defined directions, which are
used to position lines of fixed length centered on the mean
of the embeddings of the lineage along this direction. This
reduces many degrees of freedom, especially because the

Fig. 1. The top row shows a blast and neutrophilic granulocytes (from left
to right): promyelocyte, myelocyte, metamyelocyte, band granulocyte and
segmented granulocyte. The second row shows cells of the erythropoiesis:
proerythroblast as well as a basophilic, polychromatic and orthochromatic
erythroblast.



(a) Fixed Line (b) Learnt Line (c) Bézier Curve

Fig. 2. Three proposed curve models. Points represent points of the embedding for neutrophilic granulocytes (purple) and cells of the erythropoiesis (yellow)
ranging from immature (bright) to mature (dark) cells. Black curves represent the line models and the green circle represent the regression targets on the
curve. Red circles represent cluster means of the embeddings for each class. Shown for the first two embedding dimensions for visualization.

relationship between different lineages is unalterable during
training. However, this approach yields a partially interpretable
embedding.

The second method also utilizes straight lines but removes
the direction restriction. Instead, the direction is defined
through the vector with the largest singular value after sin-
gular value decomposition (SVD). SVD is performed on the
centered (mean removed) mean embeddings of the cell types
for the given lineage.

The third method is based on polynomial curve fitting to
further increase the degrees of freedom. As a polynomial
curve model we choose Bézier curves. Based on Bernstein
polynomials, the mean cell type embeddings can be
interpreted as control points that yield smooth curves. Other
curve definitions, such as splines or curves based on Lagrange
polynomials, are theoretically possible as well, allowing for
curve models of variable curvature.

For each of the three methods, we propose two methods to
define the regression targets on the curve. These are defined
such that the beginning of the curve is denoted by the value
t = 0 (most immature) and the ending of the curve by t = 1
(most mature).

Firstly, we propose to place the regression targets for each
of the C classes in a lineage equidistantly on the curve:

tuniform =

[
c

C − 1

]
. (1)

Equal distances assume a maturation process in which each
maturity stage has the same relationship to the next stage.
However, the continuous nature of the maturation process as
well as the resulting uncertainty in the labeling process do in
practice not allow for such an assumption. Due to this maturity
discretization issue, some cell types account for much larger
portions of the maturation process than others.

We try to overcome this problem by additionally proposing
the usage of regression targets based on their logarithmic
relative frequency in the dataset:

tfrequency =

[ ∑c
i=1

1
2 (log fi−1 + log fi)∑C−1

i=1
1
2 (log fi−1 + log fi)

]
, (2)

with tfrequency = 0 for c = 0 and fc the relative sample
frequency of the c-th class. This mapping ensures that classes
that contain only few samples are assigned a smaller range of
target values.

Based on these targets, the appropriate coordinates on the
curve model l are defined, such that l(tc) is the desired target
embedding of class c.

B. Loss Computation

The regression targets can be enforced by minimizing the
distance between the predicted embedding and the target
position for the respective cell type on the curve. In this case,
we propose using the L1 distance in combination with the
triplet margin loss (TML). Let B be a batch of predicted
embeddings, l the line model and xi ∈ B the embeddings
with labels yi and respective layout targets tyi

.

Lnormal =
α

|B|
∑
xi∈B

L1(xi, l(tyi)) + (1− α)LTML(B) (3)

We furthermore propose to utilize the distance along the
curve instead of the full L1 distance. This way the maximum
number of degrees of freedom is retained while still enforcing
the ordering defined by the model. This requires a projection
p(x) of the predicted embeddings x onto the curve. A root-
finding algorithm can be utilized to compute the projections.
To simplify the loss-function, we then compute the L1 dis-
tances between projected points and corresponding targets.



Lprojected =
α

|B|
∑
xi∈B

L1(p(xi), tyi
) + (1− α)LTML(B) (4)

In addition, we propose to perform the regression loss
computation (as well as the curve model l′ and target definition
t′) in a lower dimensional parametric space. The required
dimensionality reduction r can be performed using the para-
metric version of t-SNE. This allows retaining even more
degrees of freedom, as loss computation on parametric t-SNE
representations effectively accounts for manipulations in the
neighborhood relations only – not supplying strict positions
for the embeddings.

Ldim-red =
α

|B|
∑
xi∈B

L1(r(xi), l
′(t′yi

))+(1−α)LTML(B) (5)

Of course, a combination of dimensionality reduced and
projected loss are possible.

In a preliminary hyper-parameter analysis on a subset of the
data, we found that α = 0.2 is a suitable weighting for losses
that are not performed on dimensionality reduced embeddings.
When using the t-SNE version, α = 0.6 is used instead.

C. Experimental Setup

The basic setup is based on a previous analysis of network
architectures and hyper-parameters for the given dataset [8].
We utilize DenseNet-121 [9] (pre-trained on ImageNet) as a
backbone network to extract embeddings of length 256.

In training, the entire network is fine-tuned based on the
proposed losses. The curve models and target definitions are
updated at the end of each epoch based on the newly predicted
embeddings.

Based on the embeddings, we obtain classification predic-
tions using a hyper-parameter optimized RBF SVM [10]. The
training of the SVM is performed after each epoch using a
5-fold cross-validation split of the training data only. Further-
more, we perform dropout (p = 0.05), as well as random
crop and rotation as data augmentations. Early stop is applied
after 50 epochs without validation F-score improvement. The
results are obtained by performing a six-fold cross-validation.

IV. RESULTS

Figure 3 shows the resulting macro F-scores for each
proposed method. Furthermore, we show training with the
Triplet Margin Loss (TML) as a baseline.

Performance increases compared to this baseline can be
observed for several models, most notably fixed and linear
curves with frequency-based targets for the combination of
projected and dimensionality reduced loss, linear curves in
general for the normal loss, and linear curves (both targets)
and fixed curve (frequency-based) projected loss.

The largest improvement is obtained by utilizing uniform
targets on a linear curve with the normal loss, which shows
an F-score increase from 0.689 to 0.713.

V. DISCUSSION

The results show that for the dimensionality-reduced ver-
sion, curves with higher complexity perform better. This high-
lights that a certain degree of freedom is required. However,
even the most successful Bézier curve does not lead to an
improvement compared to classical TML.

For the projected losses as well as for the normal loss,
improvements can be observed. In these cases, Bézier curves
usually yield lower results, which indicates too many or
unsuitable degrees of freedom. Instead, fixed and linear curves
achieve better results.

Generally, a performance increase for the classification of
hematopoietic cells when using spatial maturity regression can
be observed. These results were obtained despite the additional
difficulty introduced by optimizing two lineages of ten classes
overall and five non-regressive classes simultaneously.

Projections of cell representations onto spatial target models
can be observed in Figure 4. We project the baseline TML
as well as representations produced using SMR with linear
uniform targets and normal training onto learnt linear models
for both lineages. We additionally plot the cell images whose
representations lie closest to the cell type positions on the
model for the SMR training case.

Figure 4 shows that the representations produced using
SMR are better sorted and show lower deviations along the
spatial model dimension for many cell types. The segmented
granulocytes for example overlap nearly completely with the
band granulocytes when trained with the TML. However,
when using SMR many segmented granulocytes are positioned
further to the right – resulting in a better sorting. For the
metamyelocytes as well as the myelocytes it can be noticed
that the representations experience a smaller spread along
the model for SMR training. In case of the erythropoiesis
very similar observations can be made, as for example the
basophilic erythroblasts encounter less overlap with the poly-
chromatic erythroblasts using SMR.

Regarding the retrieved cell images, it can be observed that
the cell lineage differentiation can be visually traced along
the models for both lineages – supplying us with a mean to
interpret the produced representations in the context of cell
maturation.

Compared to simple classification algorithms, spatial matu-
rity regression allows a more detailed prediction: by utilizing
the curve models in the prediction step, we can obtain a
regression estimate. This allows, for example, the identification
of samples that lie at the border of two subsequent classes in
the continuous maturation process.

The overall increase of 2.4 percentage points in macro
F-score is a considerable improvement of the classification
method. Even though other publications [2], [3] report larger
absolute results, these often result from dataset simplification
and are, therefore, not comparable. In contrast to other state-
of-the-art datasets [1]–[3], our image data is more challenging
due to several aspects: Firstly, we utilize more data than [1]
including more challenging images with respect to variability
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Fig. 3. Resulting macro F-scores for the various proposed methods.

(a) Erythropoiesis projections (b) Neutrophilic granulopoiesis projections

Fig. 4. Embedding projections onto spatial target models. SMR embeddings were produced using linear uniform targets trained with normal loss without the
usage of class-weights. Red lines indicate SMR decision boundaries on the model that separate the cell classes. For each cell type position on the model the
cells with the nearest neighboring SMR representations are visualized.

in staining and visual appearance. This also makes the dataset
more challenging compared to [2], which is based on selected
image regions chosen specifically for their simple visual
interpretability. In contrast to [3], we focus on a larger number
of classes.

VI. CONCLUSION

In this work, we propose spatial maturity regression – a
technique to regularize the learning process of neural networks
by performing regression for ordinal maturity information
along learnt curves in the embedding space. We investigate
three curve models, two regression target mappings and dif-
ferent loss functions. Several combinations of those improve

macro F-scores by up to 2.4 percentage points for hematopoi-
etic cell classification. In addition to higher classification
scores, the obtained results are better interpretable by visu-
alizing samples as points on the curve.
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