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Abstract—Automated cell classification in human bone marrow
microscopy images could lead to faster acquisition and, therefore,
to a considerably larger number of cells for the statistical cell
count analysis. As basis for the diagnosis of hematopoietic dis-
eases such as leukemia, this would be a significant improvement
of clinical workflows. The classification of such cells, however, is
challenging, partially due to dependencies between different cell
types. In 2021, guided representation learning was introduced
as an approach to include this domain knowledge into training
by providing “embedding guides” as an optimization target for
individual cell types.

In this work, we propose improvements to guided repre-
sentation learning by automatically generating guides based
on graph optimization algorithms. We incorporate information
about the visual similarity and the impact on diagnosis of mis-
classifications. We show that this reduces critical false predictions
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and improves the overall classification F-score by up to 2.5
percentage points.

Index Terms—representation learning, cell classification, em-
bedding guides

I. INTRODUCTION

Many diseases of the blood-forming system, including var-
ious types of leukemia, do not exclusively result in morpho-
logical changes of blood cells but in an alteration of the cell
type distribution. Consequently, the key part of diagnosing
such diseases lies in correctly identifying cell types of a large
number of samples to obtain a statistically reliable estimation
of this distribution. This analysis is typically performed visu-
ally based on stained microscopy images from bone marrow
samples. Due to practical constraints, such as a limited amount
of trained medical experts to perform this time-consuming
task, the number of evaluated cells is typically fairly low.

Using deep neural networks, a much higher throughput
could be achieved, resulting in a larger sample size for the
estimation of the cell distribution. This could lead to more
statistically accurate results and more objective estimations,
particularly considering the inter-rater disagreement. With978-1-6654-6964-7/22/$31.00 ©2022 IEEE



sufficiently accurate models, this could be the basis for a faster
and more reliable diagnosis.

However, the domain of microscopy images of bone marrow
samples is highly demanding and not straight forward to
conquer for neural networks. Not only is the image data
itself challenging – with varying degrees of cell density and
potential artifacts – the cell classification itself needs special
considerations. In human bone marrow, cells develop from the
hematopoietic stem cells and mature into specific types. This
results in relationships between cell types that should not be
ignored when using them as classes for a neural network. For
example, immature cells across different lineages share more
characteristics than fully formed mature cells. Furthermore,
within a lineage, the maturation process is continuous such
that two adjacent maturity stages are more similar compared
to non-adjacent stages. This not only results in visual cues but
also changes the severity of mis-classifications: an “off-by-one
error” is less harmful than predicting a wrong lineage – this
fact is also supported by inter-rater disagreements.

Related Work

A common approach for incorporating domain knowledge
(such as the aforementioned relationships between cells) into
neural network training is offered by representation learning
techniques. In order to learn suitable embeddings (repre-
sentations), loss functions such as the Triplet Margin Loss
(TML) [1] enforce clusters representing the classes.

Instead of only minimizing intra-class distances and maxi-
mizing inter-class distances, more sophisticated methods can
be employed to enforce constraints based on domain knowl-
edge, for example with “embedding guides” [2]. These guides
encode class relationships in the form of a two-dimensional
embedding that was created manually by experts. In training,
they can be enforced in various ways – most commonly
by minimizing the distance between learnt embeddings and
the guide. In particular, the authors propose the “Inverse
UMAP Loss”, for which an n-dimensional embedding position
ecnD, epoch is created for each class c for each epoch from the
two-dimensional points of the guide ec2D using UMAP [3].
The computation is based on UMAP trained on the computed
embedding after each epoch:

ecnD,epoch = κ·ecnD,epoch−1+(1−κ)·UMAP−1(ec2D) ∀c. (1)

This loss is combined with classical TML:

LUMAP = (1− α)LTML(TB) +
α

|B|

|B|−1∑
i=0

L1(e
yi

nD, ei), (2)

where TB represents all mined triplets in the batch B that
violate the margin (triplet mining).

They furthermore propose the “Distance Loss”, which en-
forces neighborhood relations while ignoring absolute posi-

tions by minimizing the difference of distances of pairs within
the predicted and guide embeddings:

d(i, j) = L1(L1(ei, ej), L1(e
yi

2d, e
yj

2d)) (3)

LDIST =
2

|B|(|B| − 1)

|B|−1∑
i=0

i−1∑
j=0

d(i, j). (4)

This loss also incorporates the TML.
Even though these methods show improved classification

scores, only a single guide was investigated.
A large part of this work relies on graph visualization

approaches that are used to generate embedding guides. In par-
ticular, we utilize the Kamada-Kawai [4], the Fruchtermann-
Reingold [5], and the Distributed Recursive Layout [6] algo-
rithms. The Kamada-Kawai algorithm minimizes the energies
in a virtual system that represents graph nodes as particles
connected by physical springs. The forces are computed using
Hooke’s law and the strength of the springs is determined by
the value in an adjacency matrix. The Fruchtermann-Reingold
algorithm follows a similar approach but with a fixed edge
length for all edges. For the optimization, attracting forces
are used for neighboring nodes and repelling forces for all
nodes. The layout is computed iteratively, by first applying
the attractive forces and the repelling forces, followed by a
temperature computation to limit the total displacement of the
layout in each iteration. The Distributed Recursive Layout
algorithm is a multi-level force-directed method that uses
simulated annealing. It iteratively refines the embedding in
multiple resolutions through subsequent downsampling oper-
ations on the number of nodes.

Contribution

In this work, we propose alternatives to the manually
crafted embedding guide [2]. We propose various methods
of automatically generating guides based on visual similarity
of cell types and the impact of mis-classifications for the
diagnosis. We show that these approaches are not only viable
options for reducing human supervision in guide creation but
also improve results for hematopoietic cell classification.

II. IMAGE DATA

In this work, we focus on the classification of hematopoietic
cells from human bone marrow samples. Each sample is
stained using Pappenheim-staining [7], which is commonly
used for visual analysis to make cell types easily distinguish-
able. The samples are digitized using automatic immersion
oiling and a magnification of 63×. Medical experts sub-
sequently select representative regions in each whole slide
image, similarly to the manual workflow in clinical practice.

Individual cells are identified in a semi-automatic work-
flow [8]. Firstly, automatic detection based on U-Net [9] and
Watershed [10], [11] is performed. Secondly, the results are
manually validated and, if necessary, corrected.

The cell type of each individual cell is annotated by medical
experts, typically in collaboration of two experts. As this
annotation is used for classification, the terms “cell type” and



Fig. 1. Example cell images for each cell type. Top row: promyelocyte,
myelocyte, metamyelocyte, band granulocyte and segmented granulocyte.
Middle row: blast cell, proerythroblast, as well as basophilic, polychromatic
and orthochromatic erythroblast. Bottom row: basophilic and eosinophilic
granulocyte as well as a promonocyte, monocyte and lymphocyte.

“class” are used interchangeably in the following. For each
cell, patches of size 224×224 px are extracted from the Whole
Slide Image based on the annotations. Examples are shown in
Figure 1.

In total, the dataset comprises 4 560 annotated cell patches.
The number of samples per cell type varies greatly, in accor-
dance with the typical distribution of cell types in the human
bone marrow. This class-imbalance is one challenge that needs
to be considered by classification approaches.

III. METHODS

In the following sections, we will present the proposed
methods starting with similarity and severity matrices that
form the foundation of embedding guide generation. This is
followed by an analysis of the resulting guide, an introduction
to the training methods and specifications of the experimental
setup.

A. Similarity and Severity Assessment

As the aim of this work is to incorporate biological domain
knowledge, particularly the relationships between various cell
types, this information needs to be encoded in a suitable for-
mat. We chose to focus on two essential aspects as described in
the introduction: visual similarity and impact on the diagnosis.

1) Visual Similarity: To define visual similarity, we asked
medical experts to encode how easily a sample of a specific
cell type can be mis-interpreted as a specific different cell
type. This is denoted by a integer number between 1 and 5. 1
indicates that it is virtually impossible to confuse cell type A
as cell type B – indicating severe visual differences. 5 indicates
that the two cell types are very similar in appearance and can
thus be easily confused. The resulting matrix is presented in
Figure 2.

Most visually similar cells can be found within a cell
lineage across the maturity stages. Particularly adjacent ma-
turity stages of the neutrophilic granulocytes show visual
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basophile
eosinophile

promyelocyte
myelocyte

metamyelocyte
band granulocyte

segmented granulocyte
blast

lymphocyte
proerythroblast

erythroblast (basophile)
erythroblast (orthochromatic)
erythroblast (polychromatic)

promonocyte
monocyte

1 2 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 3 1 1 1 2 1 1 1 1 1 1 1

1 1 3 2 1 1 1 1 1 1 1 1 1 1

1 1 1 2 3 1 1 1 1 1 1 1 1 1

1 1 1 1 3 3 1 1 1 1 1 1 1 1

1 1 1 1 1 3 1 1 1 1 1 1 1 1

1 1 2 1 1 1 1 2 2 1 1 1 1 2

1 1 1 1 1 1 1 2 1 1 1 1 1 2

1 1 1 1 1 1 1 2 1 2 1 1 1 1

1 1 1 1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1 2 1 1 1 1 3

Fig. 2. Visual similarity matrix. Cells should be interpreted as “how easy
is it to falsely classify the cell denoted by the row (true class) as the cell
denoted by the column (predicted class)?” with values between 1 (severe
visual differences, impossible to confuse) and 5 (visually similar, easily to
confuse).

similarities. It should further be be noted that this matrix is
not symmetric.

2) Severity: In a similar way, the impact on the diagnosis
can be encoded. To this end, we focus on the model disease
Chronic Myeloid Leukemia (CML), which is particularly
characterized by a shift in the cell type distribution. Again, the
value range is defined between 1 (low severity) and 5 (severe
impact). The value indicates the severity of a mis-classification
between two cell types.

The resulting matrix is presented in Figure 3. Again, the
matrix is not fully symmetric. The numbers indicate, that
almost every mis-classification has a severe impact. The only
major exceptions are adjacent maturity stages within a single
cell lineage, for example neutrophilic granulocytes or cells of
the erythropoiesis.

B. Guide Generation

Based on the matrices presented in the previous section,
two-dimensional embedding guides are created. Such guides
are essentially mappings of each cell type c to a two-
dimensional coordinate ec2D.
The similarity and severity matrices can be processed and
subsequently interpreted as adjacency matrices, which are
used in force-directed algorithms often found in visualization
approaches for graphs. Typical examples for these, which
we utilize in this work, are the Kamada-Kawai (KK), the
Fruchtermann-Reingold (FR) and the Distributed Recursive
Layout (DRL) algorithms as described in the introduction. We
only utilize unweighted adjacency values, as not all of the
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erythroblast (orthochromatic)
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5 5 5 5 5 5 5 5 5 5 5 5 5 5
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5 5 2 3 4 4 5 5 5 5 5 5 5 5
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5 5 4 3 2 1 5 5 5 5 5 5 5 5

5 5 4 4 3 1 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 1 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 2 3 3 5 5

5 5 5 5 5 5 5 5 5 2 3 3 5 5

5 5 5 5 5 5 5 5 5 3 2 2 5 5

5 5 5 5 5 5 5 5 5 3 2 2 5 5

5 5 5 5 5 5 5 1 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5

Fig. 3. Severity matrix. Cells should be interpreted as “how severe is the
impact on the diagnosis of Chronic Myeloid Leukemia (CML) if the cell
denoted by the row (true class) is falsely classified as the cell denoted by the
column (predicted class)?” with values between 1 (low severity) to 5 (very
severe).

methods (Fruchtermann-Reingold) can handle weighted adja-
cency matrices. We transform the matrices into unweighted ad-
jacency matrices by removing the lowest entries, normalizing
the entries into the range [0, 1] and subsequently rounding each
entry to either 0 or 1. Additionally, we propose to incorporate
the maturity information by setting the adjacency values of
cells of the same cell lineage to 1.

In the Kamada-Kawai algorithm, we utilize the adjacency
matrix directly to compute the parameters of the virtual
springs. These are applied such that more adjacent cells – for
examples visually similar cells or cell pairs that have a low
impact on the diagnosis if mis-classified – are “pulled” closer
together.

The Fruchtermann-Reingold algorithm is set up in a similar
way. The required initial embedding for the iterative optimiza-
tion is produced randomly.

In the Distributed Recursive Layout algorithm, the simi-
larity and severity matrices are applied similarly to the KK-
algorithm.

1) Baselines: We furthermore use the circular embedding
proposed by Gräbel et al. [2] and a randomly generated
embeddings as baselines.

Figure 4 shows the resulting guides. Many automatically
generated embeddings follow similar characteristics as
the circular reference embedding guide when including
the maturity progressions: particularly the neutrophilic
granulocytes and cells of the erythropoiesis are often shown
along a line or curve. Without this information and based

(a) legend (b) circular (c) random

(d) KK (sim) (e) KK (sev) (f) KK (mat)

(g) FR (sim) (h) FR (sev) (i) FR (mat)

(j) DRL (sim) (k) DRL (sev) (l) DRL (mat)

Fig. 4. Embedding guides created using the Kamada-Kawai (KK), the
Fruchtermann-Reingold (FR) or the Distributed Recursive Layout (DRL)
algorithm. The parameters are based on either the visual similarity matrix
(sim), the severity matrix (sev) or the similarity matrix with inclusion
of maturity progress information (mat). Furthermore, the manually created
circular embedding guide as well as a random guide are shown as baselines.
Each point corresponds to the two-dimensional embedding of a cell type.
Figure a) contains the color legend for the mapping to individual cell types.

purely on the matrices, the embedding guides appear less
structured and they utilize more of the available embedding
space.

C. Loss Computation

For employing the embedding guides in the training process,
we utilize the same methods as proposed in [2]: the Inverse
UMAP Loss and the Distance Loss. For both, we determine the
hyper-parameters in a preliminary hyper-parameter analysis on
a subset of the data. This yields α = 0.4 and κ = 0.2 as the
most suitable values for the Inverse UMAP Loss and α = 0.4
for the Distance Loss.



D. Experimental Setup

As encoder network, we utilize a DenseNet-121 [12], which
has shown superior performance in similar tasks. The network
is pre-trained on ImageNet [13]. For data augmentation and
regularization, we utilize dropout (p = 0.05, random crop and
random rotation.

The embedding has a dimensionality of 256. In addition
to the losses mentioned previously, we minimize the norm
of the embedding vector with a factor of 0.001 as additional
regularization. The margin for TML is set to 0.1.

Training and evaluation is performed in a six-fold cross-
validation, with one fold each for validation and testing.
Training is performed until the macro F-score on the validation
set does not improve for 50 epochs. This threshold has been
determined based on observation of the validation loss and
local minima to put a larger emphasis on results compared to
computation time. The classification scores are computed from
the embeddings using a Support Vector Machine (SVM) [14]
with an Radial Basis Function (RBF) kernel [15]. The SVM
is tuned with respect to hyper-parameters γ and c using grid
searches every 5 training epochs.

In addition to the macro F-score, which is less impacted by
the problem of class imbalance and thus the most commonly
used evaluation criterion for this approach, we evaluate the
mis-classification severity (MCS). The MCS score is obtained
by element-wise multiplication of the confusion matrix C ∈
Rmxm and severity matrix S ∈ Rmxm divided by the number
of samples n.

MCS =
1

n

m−1∑
i=0

m−1∑
j=0

Si,jCi,j (5)

A high MCS value indicates very severe mis-classifications,
while a lower value indicates mis-classifications that have
a lower impact on the diagnosis of CML. While this score
correlates with the F-score, it has a higher emphasis on the
domain knowledge: for example, mis-classifications between
adjacent maturity stages will have a lower impact on the MCS
score than on the F-score.

IV. RESULTS

Figure 5 shows the results for each of the presented guides
as well as for the baselines. Many of the proposed guides
improve both classification score as well as mis-classification
severity on the given dataset. Often, they perform better not
only compared to the Triplet Margin Loss, but also compared
to the circular embedding guide. The randomized embedding
guide is able of improving results as well when used with in-
verse UMAP optimization but is detrimental with the distance
loss.

The highest classification scores are achieved using the
inverse UMAP optimization with a guide generated using the
DRL algorithm based on the combination of similarity ma-
trix and maturity information. Also for the mis-classification
severity, this method achieves excellent results. Close results
for classification and superior results for MCS are found using

TML circular random KK FR DRL
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Fig. 5. Classification results as macro F-Score and Mis-classification Severity
(MCS) score for each guide using either the inverse UMAP loss (darker shade)
or the distance loss (lighter shade). For comparison, the TML loss using no
guide is shown as well. For the F-Score, higher values are better, for the MCS,
lower values are better.

the Furchterman-Reingold method again based on similarity
and maturity using distance loss optimization.

V. DISCUSSION

First, it should be noted that the embedding guide proposed
in [2] slightly outperforms training without guides on the
given dataset. This, however, is also the case for a randomized
embedding when using the inverse UMAP loss. This can be
explained by a clearer optimization target with guided loss
functions, which might be helpful given the class imbalance
and overall dataset size.

Interestingly, the distance loss yields better results, which
differs from the findings in [2]. A logical explanation lies in
the lower stability of the UMAP-based method. Particularly
without growing embeddings as proposed in [2], inverse
UMAP leads to lower performance.

It should further be noted that the embedding spaces are
not pre-defined anymore, as was the case for manually crafted
guides. However, the embedding guides in Figure 4 still
show a clear, suitably arranged embedding space. Particularly
the well-performing guides, which are based on similarity
and maturity information, show clear delineations of maturity
progressions. With the distance loss, predicted embeddings can
be globally rotated arbitrarily with respect to these guides.



While not defined in terms of absolute positions, the relative
arrangement of cell types in the embedding space allows visual
interpretation of results.

In terms of classification F-score and mis-classification
severity, improvements to all baselines can be reported. Par-
ticularly the similarity-based guide with incorporation of the
maturity information proves to be a very suitable guide. This
applies to all guide generation methods but is particularly
successful for FR and DRL.

Compared to training with TML, we achieve F-score im-
provements of up to 2.5 percentage points and a reduction of
the mis-classification severity of up to 4.8 percentage points.

Both visual similarity and mis-classification severity cannot
be precisely defined and encoded as a number. Therefore, both
matrices are at least in part subjective even though multiple
experts have collaborated in assigning numbers. Furthermore,
a different scale could be chosen. The range of 1 to 5 is a
compromise between very granular, which might be more ac-
curate but difficult to assign, and very coarse, which would be
technically less useful but easier to assign. As the results show,
the encodings have a positive impact in terms of classification
scores. Nevertheless, an analysis of other measures will be
considered in further research.

VI. CONCLUSION

In this work, we proposed an alternative method for the
generation of embedding guides to incorporate domain knowl-
edge into representation learning. To this end, we encoded
the visual similarity between cell types and the severity of
mis-classifications with respect to the diagnosis into matrices.
These are used as adjacency matrices in graph optimization
algorithms to yield suitable guides. We show that these guides
lead to improved classification performance and to less severe
mis-classification in the case of hematopoietic cell classifica-
tion.
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